scholarly journals Natural Frequencies Identification by FEM Applied to a 2-DOF Planar Robot and Its Validation Using MUSIC Algorithm

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1209
Author(s):  
Salvador Martínez-Cruz ◽  
Juan P. Amézquita-Sánchez ◽  
Gerardo I. Pérez-Soto ◽  
Jesús R. Rivera-Guillén ◽  
Luis A. Morales-Hernández ◽  
...  

In this paper, the natural frequencies (NFs) identification by finite element method (FEM) is applied to a two degrees-of-freedom (2-DOF) planar robot, and its validation through a novel experimental methodology, the Multiple Signal Classification (MUSIC) algorithm, is presented. The experimental platforms are two different 2-DOF planar robots with different materials for the links and different types of actuators. The FEM is carried out using ANSYS™ software for the experiments, with vibration signal analysis by MUSIC algorithm. The advantages of the MUSIC algorithm against the commonly used fast Fourier transform (FFT) method are also presented for a synthetic signal contaminated by three different noise levels. The analytical and experimental results show that the proposed methodology identifies the NFs of a high-resolution robot even when they are very closed and when the signal is embedded in high-level noise. Furthermore, the results show that the proposed methodology can obtain a high-frequency resolution with a short sample data set. Identifying the NFs of robots is useful for avoiding such frequencies in the path planning and in the selection of controller gains that establish the bandwidth.

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Muhammad Zukhri Lubis ◽  
Ikhwansyah Isranuri

Cavitation occurs due to the formation of empty cavities in the fluid flow that decreases pressure quickly. When cavitation occurs then the pump performance will decrease marked with noise and when this condition is not addressed will cause damage to the pump components. The distillation pump working under vacuum pressure and working temperature at 38 ° C is susceptible to cavitation. The pressure and temperature conditions of this distillation pump work result in faster fluid evaporation and eventually trigger cavitation. To avoid the occurrence of cavitation, it must be known operational limits concerning the pressure and working capacity of the distillation pump. The operational limit of this pump is between the shut-off point meaning there is no flow and run-out point which means the full capacity of the pump. This study aims to determine the operating limits of safe distillation pumps both from pressure and capacity. The experimental methodology used is to vary the capacity of the pump by adjusting the opening valve discharge at 100%, 90%, 80% and 70% capacities. Then for each capacity varied also the suction pressure of pump at 0 mmHg, -7 mmHg, -15 mmHg and -22 mmHg by arranging vacuum pump. The magnitude of the vibration response is measured to determine the effect of the capacity and variation of pump suction pressure. With this method can be known range of capacity and pressure suction safe for operation of distillation pump. The results showed that the highest vibration value was in the axial direction. Vibration spectrum value spread over the range 1600 - 1900 Hz with the highest value is at 100% capacity (0.00278 m3 / sec) suction pressure -0 mmHg with amplitude of 0.410 g at 1660 Hz frequency. While the lowest vibration value is at a flow rate of 0.00208 m3 / sec with an amplitude of 0.210 g at a frequency of 1816 Hz. While the minimum flow rate to avoid the occurrence of cavitation due to recirculation flow is equal to 0.00172 m3 / sec. Keywords: cavitation, distillation pump, operational limit, valve discharge, vacuum pump


Author(s):  
Ruqiang Yan ◽  
Robert X. Gao

This paper presents a local geometric projection (LGP)-based noise reduction technique for vibration signal analysis in rolling bearings. LGP is a nonlinear filtering technique that reconstructs one dimensional time series in a high-dimensional phase space using time-delayed coordinates based on the Takens embedding theorem. From the neighborhood of each point in the phase space, where a neighbor is defined as a local subspace of the whole phase space, the best subspace to which the point will be orthogonally projected is identified. Since the signal subspace is formed by the most significant eigen-directions of the neighborhood, while the less significant ones define the noise subspace, the noise can be reduced by converting the points onto the subspace spanned by those significant eigen-directions back to a new, one-dimensional time series. Improvement on signal-to-noise ratio enabled by LGP is first evaluated using a chaotic system and an analytically formulated synthetic signal. Then, analysis of bearing vibration signals is carried out as a case study. The LGP-based technique is shown to be effective in reducing noise and enhancing extraction of weak, defect-related features, as manifested by both the multi-fractal and envelope spectra of the signal.


2021 ◽  
Vol 4 (1) ◽  
pp. 251524592095492
Author(s):  
Marco Del Giudice ◽  
Steven W. Gangestad

Decisions made by researchers while analyzing data (e.g., how to measure variables, how to handle outliers) are sometimes arbitrary, without an objective justification for choosing one alternative over another. Multiverse-style methods (e.g., specification curve, vibration of effects) estimate an effect across an entire set of possible specifications to expose the impact of hidden degrees of freedom and/or obtain robust, less biased estimates of the effect of interest. However, if specifications are not truly arbitrary, multiverse-style analyses can produce misleading results, potentially hiding meaningful effects within a mass of poorly justified alternatives. So far, a key question has received scant attention: How does one decide whether alternatives are arbitrary? We offer a framework and conceptual tools for doing so. We discuss three kinds of a priori nonequivalence among alternatives—measurement nonequivalence, effect nonequivalence, and power/precision nonequivalence. The criteria we review lead to three decision scenarios: Type E decisions (principled equivalence), Type N decisions (principled nonequivalence), and Type U decisions (uncertainty). In uncertain scenarios, multiverse-style analysis should be conducted in a deliberately exploratory fashion. The framework is discussed with reference to published examples and illustrated with the help of a simulated data set. Our framework will help researchers reap the benefits of multiverse-style methods while avoiding their pitfalls.


Author(s):  
Manfred Ehresmann ◽  
Georg Herdrich ◽  
Stefanos Fasoulas

AbstractIn this paper, a generic full-system estimation software tool is introduced and applied to a data set of actual flight missions to derive a heuristic for system composition for mass and power ratios of considered sub-systems. The capability of evolutionary algorithms to analyse and effectively design spacecraft (sub-)systems is shown. After deriving top-level estimates for each spacecraft sub-system based on heuristic heritage data, a detailed component-based system analysis follows. Various degrees of freedom exist for a hardware-based sub-system design; these are to be resolved via an evolutionary algorithm to determine an optimal system configuration. A propulsion system implementation for a small satellite test case will serve as a reference example of the implemented algorithm application. The propulsion system includes thruster, power processing unit, tank, propellant and general power supply system masses and power consumptions. Relevant performance parameters such as desired thrust, effective exhaust velocity, utilised propellant, and the propulsion type are considered as degrees of freedom. An evolutionary algorithm is applied to the propulsion system scaling model to demonstrate that such evolutionary algorithms are capable of bypassing complex multidimensional design optimisation problems. An evolutionary algorithm is an algorithm that uses a heuristic to change input parameters and a defined selection criterion (e.g., mass fraction of the system) on an optimisation function to refine solutions successively. With sufficient generations and, thereby, iterations of design points, local optima are determined. Using mitigation methods and a sufficient number of seed points, a global optimal system configurations can be found.


Author(s):  
Ma Hao ◽  
Yao Chuang ◽  
Duan Minghui ◽  
Wei Jufang ◽  
Zhang Xin ◽  
...  

2018 ◽  
Vol 46 ◽  
pp. 1860046 ◽  
Author(s):  
Dayong Wang

Many models beyond the Standard Model, motivated by the recent astrophysical anomalies, predict a new type of weak-interacting degrees of freedom. Typical models include the possibility of the low-mass dark gauge bosons of a few GeV and thus making them accessible at the BESIII experiment running at the tau-charm region. The BESIII has recently searched such dark bosons in several decay modes using the high statistics data set collected at charmonium resonaces. This talk will summarize the recent BESIII results of these dark photon searches and related new physics studies.


Author(s):  
Ruqiang Yan ◽  
Robert X. Gao ◽  
Kang B. Lee ◽  
Steven E. Fick

This paper presents a noise reduction technique for vibration signal analysis in rolling bearings, based on local geometric projection (LGP). LGP is a non-linear filtering technique that reconstructs one dimensional time series in a high-dimensional phase space using time-delayed coordinates, based on the Takens embedding theorem. From the neighborhood of each point in the phase space, where a neighbor is defined as a local subspace of the whole phase space, the best subspace to which the point will be orthogonally projected is identified. Since the signal subspace is formed by the most significant eigen-directions of the neighborhood, while the less significant ones define the noise subspace, the noise can be reduced by converting the points onto the subspace spanned by those significant eigen-directions back to a new, one-dimensional time series. Improvement on signal-to-noise ratio enabled by LGP is first evaluated using a chaotic system and an analytically formulated synthetic signal. Then analysis of bearing vibration signals is carried out as a case study. The LGP-based technique is shown to be effective in reducing noise and enhancing extraction of weak, defect-related features, as manifested by the multifractal spectrum from the signal.


2018 ◽  
Vol 211 ◽  
pp. 06006 ◽  
Author(s):  
Anthimos Georgiadis ◽  
Xiaoyun Gong ◽  
Nicolas Meier

Vibration signal analysis is a common tool to detect bearing condition. Effective methods of vibration signal analysis should extract useful information for bearing condition monitoring and fault diagnosis. Spectral kurtosis (SK) represents one valuable tool for these purposes. The aim of this paper is to study the relationship between bearing clearance and bearing vibration frequencies based on SK method. It also reveals the effect of the bearing clearance on the bearing vibration characteristic frequencies This enables adjustment of bearing clearance in situ, which could significantly affect the performance of the bearings. Furthermore, the application of the proposed method using SK on the measured data offers useful information for predicting bearing clearance change. Bearing vibration data recorded at various clearance settings on a floating and a fixed bearing mounted on a shaft are the basis of this study


Sign in / Sign up

Export Citation Format

Share Document