scholarly journals Fiber Optic Sensing Technologies for Battery Management Systems and Energy Storage Applications

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1397
Author(s):  
Yang-Duan Su ◽  
Yuliya Preger ◽  
Hannah Burroughs ◽  
Chenhu Sun ◽  
Paul Ohodnicki

Applications of fiber optic sensors to battery monitoring have been increasing due to the growing need of enhanced battery management systems with accurate state estimations. The goal of this review is to discuss the advancements enabling the practical implementation of battery internal parameter measurements including local temperature, strain, pressure, and refractive index for general operation, as well as the external measurements such as temperature gradients and vent gas sensing for thermal runaway imminent detection. A reasonable matching is discussed between fiber optic sensors of different range capabilities with battery systems of three levels of scales, namely electric vehicle and heavy-duty electric truck battery packs, and grid-scale battery systems. The advantages of fiber optic sensors over electrical sensors are discussed, while electrochemical stability issues of fiber-implanted batteries are critically assessed. This review also includes the estimated sensing system costs for typical fiber optic sensors and identifies the high interrogation cost as one of the limitations in their practical deployment into batteries. Finally, future perspectives are considered in the implementation of fiber optics into high-value battery applications such as grid-scale energy storage fault detection and prediction systems.

2020 ◽  
Author(s):  
Weiji Han ◽  
Torsten Wik ◽  
Anton Kersten ◽  
Guangzhong Dong ◽  
Changfu Zou

<div>Batteries are widely applied to the energy storage and power supply in portable electronics, transportation, power systems, communication networks, etc. They are particularly demanded in the emerging technologies of vehicle electrification and renewable energy integration for a green and sustainable society. To meet various voltage, power, and energy requirements in large-scale applications, multiple battery cells have to be connected in series and/or parallel. While battery technology has advanced significantly in the past decade, existing battery management systems (BMSs) mainly focus on state monitoring and control of battery systems packed in fixed configurations. In fixed configurations, though, the battery system performance is in principle limited by the weakest cells, which can leave large parts severely underutilized. Allowing dynamic reconfiguration of battery cells, on the other hand, allows individual and flexible manipulation of the battery system at cell, module, and pack levels, which may open up a new paradigm for battery management. Following this trend, this paper provides an overview of next-generation BMSs featuring dynamic reconfiguration. Motivated by numerous potential benefits of reconfigurable battery systems (RBSs), the hardware designs, management principles, and optimization algorithms for RBSs are sequentially and systematically discussed. Theoretical and practical challenges during the design and implementation of RBSs are highlighted in the end to stimulate future research and development.</div>


2020 ◽  
Author(s):  
Weiji Han ◽  
Torsten Wik ◽  
Anton Kersten ◽  
Guangzhong Dong ◽  
Changfu Zou

<div>Batteries are widely applied to the energy storage and power supply in portable electronics, transportation, power systems, communication networks, etc. They are particularly demanded in the emerging technologies of vehicle electrification and renewable energy integration for a green and sustainable society. To meet various voltage, power, and energy requirements in large-scale applications, multiple battery cells have to be connected in series and/or parallel. While battery technology has advanced significantly in the past decade, existing battery management systems (BMSs) mainly focus on state monitoring and control of battery systems packed in fixed configurations. In fixed configurations, though, the battery system performance is in principle limited by the weakest cells, which can leave large parts severely underutilized. Allowing dynamic reconfiguration of battery cells, on the other hand, allows individual and flexible manipulation of the battery system at cell, module, and pack levels, which may open up a new paradigm for battery management. Following this trend, this paper provides an overview of next-generation BMSs featuring dynamic reconfiguration. Motivated by numerous potential benefits of reconfigurable battery systems (RBSs), the hardware designs, management principles, and optimization algorithms for RBSs are sequentially and systematically discussed. Theoretical and practical challenges during the design and implementation of RBSs are highlighted in the end to stimulate future research and development.</div>


Green ◽  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Max Jung ◽  
Simon Schwunk

AbstractUsing renewable energies means having to deal with a strongly stochastic behaviour, since for photovoltaics the sun has to shine or for wind generators the wind has to blow. For being able to supply the load any time, storage solutions are needed. Decreasing costs and better availabilities of new battery technologies like lithium-ion therefore result in a growing demand for more sophisticated battery systems in off-grid and grid connected applications. In e.g. off-grid applications, lead-acid battery systems are state of the art. Though, lithium-ion batteries become more popular because of their high energy density and long life time. Another application for electrochemical storage systems are electric vehicles. In all those cases the battery storages need to be managed. But the management of a battery system is not a trivial problem. The batteries must be monitored and controlled, there are challenges regarding safety, electrical isolation and energy efficiency. The article gives an introduction to different architectures of battery management systems (BMS). There are different approaches to design a BMS the article describes in the first part. In the second part, there is a more precise description of the electronic hardware and the software behind a BMS. To understand both function and importance of a BMS, the article introduces in the third part a few applications of BMS in bigger battery packs.


2014 ◽  
Vol 1681 ◽  
Author(s):  
Alexander Lochbaum ◽  
Peter Kiesel ◽  
Lars Wilko Sommer ◽  
Chang-Jun Bae ◽  
Tobias Staudt ◽  
...  

ABSTRACTCell aging and state-of-health (SOH) estimation is widely acknowledged as a challenge in state-of-the-art battery management systems deployed today. Towards addressing this issue, gas evolution monitoring from side reactions using embedded sensors was investigated as a parameter of interest for SOH. Li-ion battery cells with a Mn-rich chemistry were subjected to overcharge experiments. Two cells were repeatedly overcharged and the evolution of gaseous CO2 was measured using fiber optic colorimetric sensors, which were incorporated and sealed into the side pouch of the battery pouch cells. A ratiometric read-out principle has been employed for the optical measurements. Initial results indicate a non-reversible gas evolution inside the battery cells during overcharge, wherein the onset of gas evolution is delayed in time relative to the overcharge condition. An increase in the sensing signal can be observed over a time span of 40 – 50 minutes during each overcharge cycle. This investigation provides real-time information on the dynamics of gas evolution in Li-ion pouch cells during overcharge experiments and allows for an early detection of potentially hazardous cell states.


2020 ◽  
Author(s):  
Weiji Han ◽  
Torsten Wik ◽  
Anton Kersten ◽  
Guangzhong Dong ◽  
Changfu Zou

<div>Batteries are widely applied to the energy storage and power supply in portable electronics, transportation, power systems, communication networks, etc. They are particularly demanded in the emerging technologies of vehicle electrification and renewable energy integration for a green and sustainable society. To meet various voltage, power, and energy requirements in large-scale applications, multiple battery cells have to be connected in series and/or parallel. While battery technology has advanced significantly</div><div>in the past decade, existing battery management systems (BMSs) mainly focus on state monitoring and control of battery systems packed in fixed configurations. In fixed configurations, though, the battery system performance is in principle limited by the weakest cells, which can leave large parts severely underutilized. Allowing dynamic reconfiguration of battery cells, on the other hand, allows individual and flexible manipulation of the battery system at cell, module, and pack levels, which may open up a new</div><div>paradigm for battery management. Following this trend, this paper provides an overview of next-generation BMSs featuring dynamic reconfiguration. Motivated by numerous potential benefits of reconfigurable battery systems (RBSs), the hardware designs, management principles, and optimization algorithms for RBSs are sequentially and systematically discussed. Theoretical and practical challenges during the design and implementation of RBSs are highlighted in the end to stimulate future research and development.</div>


2020 ◽  
Author(s):  
Weiji Han ◽  
Torsten Wik ◽  
Anton Kersten ◽  
Guangzhong Dong ◽  
Changfu Zou

<div>Batteries are widely applied to the energy storage and power supply in portable electronics, transportation, power systems, communication networks, etc. They are particularly demanded in the emerging technologies of vehicle electrification and renewable energy integration for a green and sustainable society. To meet various voltage, power, and energy requirements in large-scale applications, multiple battery cells have to be connected in series and/or parallel. While battery technology has advanced significantly in the past decade, existing battery management systems (BMSs) mainly focus on state monitoring and control of battery systems packed in fixed configurations. In fixed configurations, though, the battery system performance is in principle limited by the weakest cells, which can leave large parts severely underutilized. Allowing dynamic reconfiguration of battery cells, on the other hand, allows individual and flexible manipulation of the battery system at cell, module, and pack levels, which may open up a new paradigm for battery management. Following this trend, this paper provides an overview of next-generation BMSs featuring dynamic reconfiguration. Motivated by numerous potential benefits of reconfigurable battery systems (RBSs), the hardware designs, management principles, and optimization algorithms for RBSs are sequentially and systematically discussed. Theoretical and practical challenges during the design and implementation of RBSs are highlighted in the end to stimulate future research and development.</div>


Sign in / Sign up

Export Citation Format

Share Document