scholarly journals Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2701
Author(s):  
Eitan Bachmat ◽  
Josu Doncel

Size-based routing policies are known to perform well when the variance of the distribution of the job size is very high. We consider two size-based policies in this paper: Task Assignment with Guessing Size (TAGS) and Size Interval Task Assignment (SITA). The latter assumes that the size of jobs is known, whereas the former does not. Recently, it has been shown by our previous work that when the ratio of the largest to shortest job tends to infinity and the system load is fixed and low, the average waiting time of SITA is, at most, two times less than that of TAGS. In this article, we first analyze the ratio between the mean waiting time of TAGS and the mean waiting time of SITA in a non-asymptotic regime, and we show that for two servers, and when the job size distribution is Bounded Pareto with parameter α=1, this ratio is unbounded from above. We then consider a system with an arbitrary number of servers and we compare the mean waiting time of TAGS with that of Size Interval Task Assignment with Equal load (SITA-E), which is a SITA policy where the load of all the servers are equal. We show that in the light traffic regime, the performance ratio under consideration is unbounded from above when (i) the job size distribution is Bounded Pareto with parameter α=1 and an arbitrary number of servers as well as (ii) for Bounded Pareto distributed job sizes with α∈(0,2)\{1} and the number of servers tends to infinity. Finally, we use the result of our previous work to show how to design decentralized systems with quality of service constraints.

2007 ◽  
Vol 19 (1) ◽  
pp. 63-63
Author(s):  
Jaejin Jang ◽  
Jaewoo Chung ◽  
Jungdae Suh ◽  
Jongtae Rhee

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1893
Author(s):  
Bara Kim ◽  
Jeongsim Kim ◽  
Jerim Kim

In this paper, we investigate waiting time problems for a finite collection of patterns in a sequence of independent multi-state trials. By constructing a finite GI/M/1-type Markov chain with a disaster and then using the matrix analytic method, we can obtain the probability generating function of the waiting time. From this, we can obtain the stopping probabilities and the mean waiting time, but it also enables us to compute the waiting time distribution by a numerical inversion.


2005 ◽  
Vol 42 (02) ◽  
pp. 478-490
Author(s):  
De-An Wu ◽  
Hideaki Takagi

We consider single-server queues with exponentially distributed service times, in which the arrival process is governed by a semi-Markov process (SMP). Two service disciplines, processor sharing (PS) and random service (RS), are investigated. We note that the sojourn time distribution of a type-lcustomer who, upon his arrival, meetskcustomers already present in the SMP/M/1/PS queue is identical to the waiting time distribution of a type-lcustomer who, upon his arrival, meetsk+1 customers already present in the SMP/M/1/RS queue. Two sets of system equations, one for the joint transform of the sojourn time and queue size distributions in the SMP/M/1/PS queue, and the other for the joint transform of the waiting time and queue size distributions in the SMP/M/1/RS queue, are derived. Using these equations, the mean sojourn time in the SMP/M/1/PS queue and the mean waiting time in the SMP/M/1/RS queue are obtained. We also consider a special case of the SMP in which the interarrival time distribution is determined only by the type of the customer who has most recently arrived. Numerical examples are also presented.


1983 ◽  
Vol 15 (01) ◽  
pp. 216-218
Author(s):  
Gunnar Blom

Let X 1, X2, · ·· be a stationary sequence of random variables and E 1 , E 2 , · ··, EN mutually exclusive events defined on k consecutive X's such that the probabilities of the events have the sum unity. In the sequence E j1 , E j2 , · ·· generated by the X's, the mean waiting time from an event, say E j1 , to a repetition of that event is equal to N (under a mild condition of ergodicity). Applications are given.


1982 ◽  
Vol 19 (03) ◽  
pp. 518-531 ◽  
Author(s):  
Gunnar Blom ◽  
Daniel Thorburn

Random digits are collected one at a time until a given k -digit sequence is obtained, or, more generally, until one of several k -digit sequences is obtained. In the former case, a recursive formula is given, which determines the distribution of the waiting time until the sequence is obtained and leads to an expression for the probability generating function. In the latter case, the mean waiting time is given until one of the given sequences is obtained, or, more generally, until a fixed number of sequences have been obtained, either different sequences or not necessarily different ones. Several results are known before, but the methods of proof seem to be new.


2004 ◽  
Vol 41 (2) ◽  
pp. 455-466 ◽  
Author(s):  
Peter Becker-Kern ◽  
Mark M. Meerschaert ◽  
Hans-Peter Scheffler

Continuous-time random walks incorporate a random waiting time between random jumps. They are used in physics to model particle motion. A physically realistic rescaling uses two different time scales for the mean waiting time and the deviation from the mean. This paper derives the scaling limits for such processes. These limit processes are governed by fractional partial differential equations that may be useful in physics. A transfer theorem for weak convergence of finite-dimensional distributions of stochastic processes is also obtained.


1996 ◽  
Vol 455 ◽  
Author(s):  
T. Odagaki ◽  
J. Matsui ◽  
M. Fujisaki ◽  
M. Higuchi

ABSTRACTVitrification is a gradual freezing process of supercooled liquids, during which a slow process is separated from the fast diffusive and microscopic motions. The slow process is identified as a non-trapped jump motion and can be characterized by the waiting time distribution (WTD) of the elementary relaxation process. We first show that the WTD can be expressed as a power law function in the long time limit in general with modest assumptions. Defining the glass transition temperature by vanishing diffusivity or the divergence of the mean waiting time, we relate the exponent to the Adam-Gibbs parameter Tsc(T) where T is the temperature and sc(T) is the excess entropy. We also show that the divergence of the fluctuation of WTD leads to a cross over in the non-Gaussianity and present a unified view of the dynamics in the vitrification process.


2004 ◽  
Vol 41 (02) ◽  
pp. 455-466 ◽  
Author(s):  
Peter Becker-Kern ◽  
Mark M. Meerschaert ◽  
Hans-Peter Scheffler

Continuous-time random walks incorporate a random waiting time between random jumps. They are used in physics to model particle motion. A physically realistic rescaling uses two different time scales for the mean waiting time and the deviation from the mean. This paper derives the scaling limits for such processes. These limit processes are governed by fractional partial differential equations that may be useful in physics. A transfer theorem for weak convergence of finite-dimensional distributions of stochastic processes is also obtained.


1998 ◽  
Vol 11 (3) ◽  
pp. 355-368 ◽  
Author(s):  
Robert B. Cooper ◽  
Shun-Chen Niu ◽  
Mandyam M. Srinivasan

The classical renewal-theory (waiting time, or inspection) paradox states that the length of the renewal interval that covers a randomly-selected time epoch tends to be longer than an ordinary renewal interval. This paradox manifests itself in numerous interesting ways in queueing theory, a prime example being the celebrated Pollaczek-Khintchine formula for the mean waiting time in the M/G/1 queue. In this expository paper, we give intuitive arguments that “explain” why the renewal-theory paradox is ubiquitous in queueing theory, and why it sometimes produces anomalous results. In particular, we use these intuitive arguments to explain decomposition in vacation models, and to derive formulas that describe some recently-discovered counterintuitive results for polling models, such as the reduction of waiting times as a consequence of forcing the server to set up even when no work is waiting.


Sign in / Sign up

Export Citation Format

Share Document