scholarly journals Optical Gas Sensing with Liquid Crystal Droplets and Convolutional Neural Networks

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2854
Author(s):  
José Frazão ◽  
Susana I. C. J. Palma ◽  
Henrique M. A. Costa ◽  
Cláudia Alves ◽  
Ana C. A. Roque ◽  
...  

Liquid crystal (LC)-based materials are promising platforms to develop rapid, miniaturised and low-cost gas sensor devices. In hybrid gel films containing LC droplets, characteristic optical texture variations are observed due to orientational transitions of LC molecules in the presence of distinct volatile organic compounds (VOC). Here, we investigate the use of deep convolutional neural networks (CNN) as pattern recognition systems to analyse optical textures dynamics in LC droplets exposed to a set of different VOCs. LC droplets responses to VOCs were video recorded under polarised optical microscopy (POM). CNNs were then used to extract features from the responses and, in separate tasks, to recognise and quantify the vapours exposed to the films. The impact of droplet diameter on the results was also analysed. With our classification models, we show that a single individual droplet can recognise 11 VOCs with small structural and functional differences (F1-score above 93%). The optical texture variation pattern of a droplet also reflects VOC concentration changes, as suggested by applying a regression model to acetone at 0.9–4.0% (v/v) (mean absolute errors below 0.25% (v/v)). The CNN-based methodology is thus a promising approach for VOC sensing using responses from individual LC-droplets.

Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1236 ◽  
Author(s):  
Javier Quero ◽  
Matthew Burns ◽  
Muhammad Razzaq ◽  
Chris Nugent ◽  
Macarena Espinilla

In this work, we detail a methodology based on Convolutional Neural Networks (CNNs) to detect falls from non-invasive thermal vision sensors. First, we include an agile data collection to label images in order to create a dataset that describes several cases of single and multiple occupancy. These cases include standing inhabitants and target situations with a fallen inhabitant. Second, we provide data augmentation techniques to increase the learning capabilities of the classification and reduce the configuration time. Third, we have defined 3 types of CNN to evaluate the impact that the number of layers and kernel size have on the performance of the methodology. The results show an encouraging performance in single-occupancy contexts, with up to 92 % of accuracy, but a 10 % of reduction in accuracy in multiple-occupancy. The learning capabilities of CNNs have been highlighted due to the complex images obtained from the low-cost device. These images have strong noise as well as uncertain and blurred areas. The results highlight that the CNN based on 3-layers maintains a stable performance, as well as quick learning.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lifu Zhang ◽  
Tarek S. Abdelrahman

The growth in size and complexity of convolutional neural networks (CNNs) is forcing the partitioning of a network across multiple accelerators during training and pipelining of backpropagation computations over these accelerators. Pipelining results in the use of stale weights. Existing approaches to pipelined training avoid or limit the use of stale weights with techniques that either underutilize accelerators or increase training memory footprint. This paper contributes a pipelined backpropagation scheme that uses stale weights to maximize accelerator utilization and keep memory overhead modest. It explores the impact of stale weights on the statistical efficiency and performance using 4 CNNs (LeNet-5, AlexNet, VGG, and ResNet) and shows that when pipelining is introduced in early layers, training with stale weights converges and results in models with comparable inference accuracies to those resulting from nonpipelined training (a drop in accuracy of 0.4%, 4%, 0.83%, and 1.45% for the 4 networks, respectively). However, when pipelining is deeper in the network, inference accuracies drop significantly (up to 12% for VGG and 8.5% for ResNet-20). The paper also contributes a hybrid training scheme that combines pipelined with nonpipelined training to address this drop. The potential for performance improvement of the proposed scheme is demonstrated with a proof-of-concept pipelined backpropagation implementation in PyTorch on 2 GPUs using ResNet-56/110/224/362, achieving speedups of up to 1.8X over a 1-GPU baseline.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


Sign in / Sign up

Export Citation Format

Share Document