scholarly journals A Survey of Spoofer Detection Techniques via Radio Frequency Fingerprinting with Focus on the GNSS Pre-Correlation Sampled Data

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3012
Author(s):  
Wenbo Wang ◽  
Ignacio Aguilar Sanchez ◽  
Gianluca Caparra ◽  
Andy McKeown ◽  
Tim Whitworth ◽  
...  

Radio frequency fingerprinting (RFF) methods are becoming more and more popular in the context of identifying genuine transmitters and distinguishing them from malicious or non-authorized transmitters, such as spoofers and jammers. RFF approaches have been studied to a moderate-to-great extent in the context of non-GNSS transmitters, such as WiFi, IoT, or cellular transmitters, but they have not yet been addressed much in the context of GNSS transmitters. In addition, the few RFF-related works in GNSS context are based on post-correlation or navigation data and no author has yet addressed the RFF problem in GNSS with pre-correlation data. Moreover, RFF methods in any of the three domains (pre-correlation, post-correlation, or navigation) are still hard to be found in the context of GNSS. The goal of this paper was two-fold: first, to provide a comprehensive survey of the RFF methods applicable in the GNSS context; and secondly, to propose a novel RFF methodology for spoofing detection, with a focus on GNSS pre-correlation data, but also applicable in a wider context. In order to support our proposed methodology, we qualitatively investigated the capability of different methods to be used in the context of pre-correlation sampled GNSS data, and we present a simulation-based example, under ideal noise conditions, of how the feature down selection can be done. We are also pointing out which of the transmitter features are likely to play the biggest roles in the RFF in GNSS, and which features are likely to fail in helping RFF-based spoofing detection.

2017 ◽  
Vol 71 (1) ◽  
pp. 169-188 ◽  
Author(s):  
E. Shafiee ◽  
M. R. Mosavi ◽  
M. Moazedi

The importance of the Global Positioning System (GPS) and related electronic systems continues to increase in a range of environmental, engineering and navigation applications. However, civilian GPS signals are vulnerable to Radio Frequency (RF) interference. Spoofing is an intentional intervention that aims to force a GPS receiver to acquire and track invalid navigation data. Analysis of spoofing and authentic signal patterns represents the differences as phase, energy and imaginary components of the signal. In this paper, early-late phase, delta, and signal level as the three main features are extracted from the correlation output of the tracking loop. Using these features, spoofing detection can be performed by exploiting conventional machine learning algorithms such as K-Nearest Neighbourhood (KNN) and naive Bayesian classifier. A Neural Network (NN) as a learning machine is a modern computational method for collecting the required knowledge and predicting the output values in complicated systems. This paper presents a new approach for GPS spoofing detection based on multi-layer NN whose inputs are indices of features. Simulation results on a software GPS receiver showed adequate detection accuracy was obtained from NN with a short detection time.


Author(s):  
Jose Acain ◽  
Christopher Kitts ◽  
Thomas Adamek ◽  
Kamak Ebadi ◽  
Mike Rasay

Adaptive navigation is the process by which a vehicle determines where to go based on information received while moving through the field of interest. Adaptive sampling is a specific form of this in which that information is environmental data sampled by the robot. This may be beneficial in order to save time/energy compared to a conventional navigation strategy in which the entire field is traversed. Our work in this area focuses on multi-robot gradient-based techniques for the adaptive sampling of a scalar field. To date, we have experimentally demonstrated multi-robot gradient ascent/descent as well as contour following using automated marine surface vessels. In simulation we have verified controllers for ridge descent / valley ascent as well as saddle point detection and loitering. To support rapid development of our controllers, we have developed a new testbed using wireless transmitters to establish a simple, large-scale, customizable scalar field based on the strength of the radio frequency field. A cluster of six land rovers equipped with radio signal strength sensors is then used to process sampled data, to make adaptive decisions on how to move, and to execute those moves. In this paper, we describe the technical design of the testbed, present initial experimental results, and describe our ongoing research and development work in the area of adaptive sampling and multi-robot control.


The wide scale use of facial recognition systems has caused concerns about spoofing attacks. Security is essential requirement for a face recognition system to provide reliable protection against spoofing attacks. Spoofing happens in situations where someone tries to behave as an authorized user to obtain illicitly access the protected system to gain advantage over it. In order to identify spoofing attacks, face spoofing detection approaches have been used. Traditional face spoofing detection techniques are not good enough as most of them focus only on the gray scale information and discarding the color information. Here a face spoofing detection approach with color texture and edge analysis is presented. The approach for investigating the texture of input images, Local binary pattern and Edge Histogram descriptor are proposed. Experiments on a publicly available dataset, Replay attack, showed excellent results compared to existing works.


2022 ◽  
Author(s):  
Anu Jagannath ◽  
Jithin Jagannath ◽  
Prem Sagar Pattanshetty Vasanth Kumar

Fifth generation (5G) networks and beyond envisions massive Internet of Things (IoT) rollout to support disruptive applications such as extended reality (XR), augmented/virtual reality (AR/VR), industrial automation, autonomous driving, and smart everything which brings together massive and diverse IoT devices occupying the radio frequency (RF) spectrum. Along with spectrum crunch and throughput challenges, such a massive scale of wireless devices exposes unprecedented threat surfaces. RF fingerprinting is heralded as a candidate technology that can be combined with cryptographic and zero-trust security measures to ensure data privacy, confidentiality, and integrity in wireless networks. Motivated by the relevance of this subject in the future communication networks, in this work, we present a comprehensive survey of RF fingerprinting approaches ranging from a traditional view to the most recent deep learning (DL) based algorithms. Existing surveys have mostly focused on a constrained presentation of the wireless fingerprinting approaches, however, many aspects remain untold. In this work, however, we mitigate this by addressing every aspect - background on signal intelligence (SIGINT), applications, relevant DL algorithms, systematic literature review of RF fingerprinting techniques spanning the past two decades, discussion on datasets, and potential research avenues - necessary to elucidate this topic to the reader in an encyclopedic manner.


Author(s):  
Abdul Basit ◽  
Maham Zafar ◽  
Xuan Liu ◽  
Abdul Rehman Javed ◽  
Zunera Jalil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document