scholarly journals Attentively Learning Edge Distributions for Semantic Segmentation of Remote Sensing Imagery

2021 ◽  
Vol 14 (1) ◽  
pp. 102
Author(s):  
Xin Li ◽  
Tao Li ◽  
Ziqi Chen ◽  
Kaiwen Zhang ◽  
Runliang Xia

Semantic segmentation has been a fundamental task in interpreting remote sensing imagery (RSI) for various downstream applications. Due to the high intra-class variants and inter-class similarities, inflexibly transferring natural image-specific networks to RSI is inadvisable. To enhance the distinguishability of learnt representations, attention modules were developed and applied to RSI, resulting in satisfactory improvements. However, these designs capture contextual information by equally handling all the pixels regardless of whether they around edges. Therefore, blurry boundaries are generated, rising high uncertainties in classifying vast adjacent pixels. Hereby, we propose an edge distribution attention module (EDA) to highlight the edge distributions of leant feature maps in a self-attentive fashion. In this module, we first formulate and model column-wise and row-wise edge attention maps based on covariance matrix analysis. Furthermore, a hybrid attention module (HAM) that emphasizes the edge distributions and position-wise dependencies is devised combing with non-local block. Consequently, a conceptually end-to-end neural network, termed as EDENet, is proposed to integrate HAM hierarchically for the detailed strengthening of multi-level representations. EDENet implicitly learns representative and discriminative features, providing available and reasonable cues for dense prediction. The experimental results evaluated on ISPRS Vaihingen, Potsdam and DeepGlobe datasets show the efficacy and superiority to the state-of-the-art methods on overall accuracy (OA) and mean intersection over union (mIoU). In addition, the ablation study further validates the effects of EDA.

2021 ◽  
Vol 13 (15) ◽  
pp. 2986
Author(s):  
Xin Li ◽  
Feng Xu ◽  
Runliang Xia ◽  
Xin Lyu ◽  
Hongmin Gao ◽  
...  

Semantic segmentation of remote sensing imagery is a fundamental task in intelligent interpretation. Since deep convolutional neural networks (DCNNs) performed considerable insight in learning implicit representations from data, numerous works in recent years have transferred the DCNN-based model to remote sensing data analysis. However, the wide-range observation areas, complex and diverse objects and illumination and imaging angle influence the pixels easily confused, leading to undesirable results. Therefore, a remote sensing imagery semantic segmentation neural network, named HCANet, is proposed to generate representative and discriminative representations for dense predictions. HCANet hybridizes cross-level contextual and attentive representations to emphasize the distinguishability of learned features. First of all, a cross-level contextual representation module (CCRM) is devised to exploit and harness the superpixel contextual information. Moreover, a hybrid representation enhancement module (HREM) is designed to fuse cross-level contextual and self-attentive representations flexibly. Furthermore, the decoder incorporates DUpsampling operation to boost the efficiency losslessly. The extensive experiments are implemented on the Vaihingen and Potsdam benchmarks. In addition, the results indicate that HCANet achieves excellent performance on overall accuracy and mean intersection over union. In addition, the ablation study further verifies the superiority of CCRM.


2020 ◽  
Vol 12 (6) ◽  
pp. 989 ◽  
Author(s):  
Hao Su ◽  
Shunjun Wei ◽  
Shan Liu ◽  
Jiadian Liang ◽  
Chen Wang ◽  
...  

Instance segmentation in high-resolution (HR) remote sensing imagery is one of the most challenging tasks and is more difficult than object detection and semantic segmentation tasks. It aims to predict class labels and pixel-wise instance masks to locate instances in an image. However, there are rare methods currently suitable for instance segmentation in the HR remote sensing images. Meanwhile, it is more difficult to implement instance segmentation due to the complex background of remote sensing images. In this article, a novel instance segmentation approach of HR remote sensing imagery based on Cascade Mask R-CNN is proposed, which is called a high-quality instance segmentation network (HQ-ISNet). In this scheme, the HQ-ISNet exploits a HR feature pyramid network (HRFPN) to fully utilize multi-level feature maps and maintain HR feature maps for remote sensing images’ instance segmentation. Next, to refine mask information flow between mask branches, the instance segmentation network version 2 (ISNetV2) is proposed to promote further improvements in mask prediction accuracy. Then, we construct a new, more challenging dataset based on the synthetic aperture radar (SAR) ship detection dataset (SSDD) and the Northwestern Polytechnical University very-high-resolution 10-class geospatial object detection dataset (NWPU VHR-10) for remote sensing images instance segmentation which can be used as a benchmark for evaluating instance segmentation algorithms in the high-resolution remote sensing images. Finally, extensive experimental analyses and comparisons on the SSDD and the NWPU VHR-10 dataset show that (1) the HRFPN makes the predicted instance masks more accurate, which can effectively enhance the instance segmentation performance of the high-resolution remote sensing imagery; (2) the ISNetV2 is effective and promotes further improvements in mask prediction accuracy; (3) our proposed framework HQ-ISNet is effective and more accurate for instance segmentation in the remote sensing imagery than the existing algorithms.


2019 ◽  
Vol 11 (15) ◽  
pp. 1774 ◽  
Author(s):  
Yaning Yi ◽  
Zhijie Zhang ◽  
Wanchang Zhang ◽  
Chuanrong Zhang ◽  
Weidong Li ◽  
...  

Urban building segmentation is a prevalent research domain for very high resolution (VHR) remote sensing; however, various appearances and complicated background of VHR remote sensing imagery make accurate semantic segmentation of urban buildings a challenge in relevant applications. Following the basic architecture of U-Net, an end-to-end deep convolutional neural network (denoted as DeepResUnet) was proposed, which can effectively perform urban building segmentation at pixel scale from VHR imagery and generate accurate segmentation results. The method contains two sub-networks: One is a cascade down-sampling network for extracting feature maps of buildings from the VHR image, and the other is an up-sampling network for reconstructing those extracted feature maps back to the same size of the input VHR image. The deep residual learning approach was adopted to facilitate training in order to alleviate the degradation problem that often occurred in the model training process. The proposed DeepResUnet was tested with aerial images with a spatial resolution of 0.075 m and was compared in performance under the exact same conditions with six other state-of-the-art networks—FCN-8s, SegNet, DeconvNet, U-Net, ResUNet and DeepUNet. Results of extensive experiments indicated that the proposed DeepResUnet outperformed the other six existing networks in semantic segmentation of urban buildings in terms of visual and quantitative evaluation, especially in labeling irregular-shape and small-size buildings with higher accuracy and entirety. Compared with the U-Net, the F1 score, Kappa coefficient and overall accuracy of DeepResUnet were improved by 3.52%, 4.67% and 1.72%, respectively. Moreover, the proposed DeepResUnet required much fewer parameters than the U-Net, highlighting its significant improvement among U-Net applications. Nevertheless, the inference time of DeepResUnet is slightly longer than that of the U-Net, which is subject to further improvement.


Author(s):  
F. Wen ◽  
Y. Zhang ◽  
B. Zhang

Abstract. Cloud detection is a vital preprocessing step for remote sensing image applications, which has been widely studied through Convolutional Neural Networks (CNNs) in recent years. However, the available CNN-based works only extract local/non-local features by stacked convolution and pooling layers, ignoring global contextual information of the input scenes. In this paper, a novel segmentation-based network is proposed for cloud detection of remote sensing images. We add a multi-class classification branch to a U-shaped semantic segmentation network. Through the encoder-decoder architecture, pixelwise classification of cloud, shadow and landcover can be obtained. Besides, the multi-class classification branch is built on top of the encoder module to extract global context by identifying what classes exist in the input scene. Linear representation encoded global contextual information is learned in the added branch, which is to be combined with featuremaps of the decoder and can help to selectively strengthen class-related features or weaken class-unrelated features at different scales. The whole network is trained and tested in an end-to-end fashion. Experiments on two Landsat-8 cloud detection datasets show better performance than other deep learning methods, which finally achieves 90.82% overall accuracy and 0.6992 mIoU on the SPARCS dataset, demonstrating the effectiveness of the proposed framework for cloud detection in remote sensing images.


2021 ◽  
Vol 13 (19) ◽  
pp. 3900
Author(s):  
Haoran Wei ◽  
Xiangyang Xu ◽  
Ni Ou ◽  
Xinru Zhang ◽  
Yaping Dai

Remote sensing has now been widely used in various fields, and the research on the automatic land-cover segmentation methods of remote sensing imagery is significant to the development of remote sensing technology. Deep learning methods, which are developing rapidly in the field of semantic segmentation, have been widely applied to remote sensing imagery segmentation. In this work, a novel deep learning network—Dual Encoder with Attention Network (DEANet) is proposed. In this network, a dual-branch encoder structure, whose first branch is used to generate a rough guidance feature map as area attention to help re-encode feature maps in the next branch, is proposed to improve the encoding ability of the network, and an improved pyramid partial decoder (PPD) based on the parallel partial decoder is put forward to make fuller use of the features form the encoder along with the receptive filed block (RFB). In addition, an edge attention module using the transfer learning method is introduced to explicitly advance the segmentation performance in edge areas. Except for structure, a loss function composed with the weighted Cross Entropy (CE) loss and weighted Union subtract Intersection (UsI) loss is designed for training, where UsI loss represents a new region-based aware loss which replaces the IoU loss to adapt to multi-classification tasks. Furthermore, a detailed training strategy for the network is introduced as well. Extensive experiments on three public datasets verify the effectiveness of each proposed module in our framework and demonstrate that our method achieves more excellent performance over some state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3848
Author(s):  
Wei Cui ◽  
Meng Yao ◽  
Yuanjie Hao ◽  
Ziwei Wang ◽  
Xin He ◽  
...  

Pixel-based semantic segmentation models fail to effectively express geographic objects and their topological relationships. Therefore, in semantic segmentation of remote sensing images, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either. To solve these problems, object-based models such as graph neural networks (GNNs) are considered. However, traditional GNNs directly use similarity or spatial correlations between nodes to aggregate nodes’ information, which rely too much on the contextual information of the sample. The contextual information of the sample is often distorted, which results in a reduction in the node classification accuracy. To solve this problem, a knowledge and geo-object-based graph convolutional network (KGGCN) is proposed. The KGGCN uses superpixel blocks as nodes of the graph network and combines prior knowledge with spatial correlations during information aggregation. By incorporating the prior knowledge obtained from all samples of the study area, the receptive field of the node is extended from its sample context to the study area. Thus, the distortion of the sample context is overcome effectively. Experiments demonstrate that our model is improved by 3.7% compared with the baseline model named Cluster GCN and 4.1% compared with U-Net.


2021 ◽  
Vol 15 (02) ◽  
Author(s):  
Annus Zulfiqar ◽  
Muhammad M. Ghaffar ◽  
Muhammad Shahzad ◽  
Christian Weis ◽  
Muhammad I. Malik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document