scholarly journals The Effect of Various Parameters on a Portable Sensor for the Detection of Thin Biofilms in Water Pipes

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4421
Author(s):  
Sachin Davis ◽  
Nathan Salowitz ◽  
Lucas Beversdorf ◽  
Marcia R. Silva

The use of high-frequency strain waves to perform examinations and note measurements is referred to as ultrasonic testing (UT). UT is commonly used for the detection or evaluation of flaws and characterization of materials, among other applications. A standard ultrasonic inspection system comprises a pulser/receiver, transducer, and display devices. The pulser/receiver produces electrical pulses of high voltage. The transducer generates high-frequency ultrasonic energy after being driven by the pulser. The reflected wave is then converted into an electrical signal by the transducer and is displayed on a screen. The reflected signal strength versus the time plot helps to glean information regarding the features of a defect. In this paper, we discuss the experiments performed in a laboratory setting to determine ultrasound-based biofilm sensor sensitivity in relation to changes in the surrounding environment of temperature, concentration, turbidity, and conductivity of the liquid passing through the system. The effect of the change in frequency of the sensors was also studied. The sensors being developed are small and compact, portable, can be placed on the outer walls of the desired surface, use digital signal processing techniques, and the biofilm presence on the inner walls of the surface can be monitored.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Li ◽  
Jingjing Wang ◽  
Xiaobo Zhang ◽  
Xiao Zhang ◽  
Hongmei Gao ◽  
...  

Abstract Background High-Frequency Irreversible Electroporation (H-FIRE) is a novel technology for non-thermal ablation. Different from Irreversible electroporation (IRE), H-FIRE delivers bipolar electrical pulses without muscle contraction and does not cause electrolysis. Currently, little is known regarding the cardiac safety during the administration of H-FIRE on liver. The aim of this study was to evaluate the changes of electrocardiogram (ECG) and biomarkers of cardiac damage during asymmetrical waveform of H-FIRE therapy in vivo. Methods The swines (n = 7) in IRE group, which used 100 pulses (2200 V, 100–100 μs configuration), were administrated with muscle relaxant under anesthesia. In the absence of muscle relaxant, 7 swines in H-FIRE group were performed with 2400 pulses (3000 V, 5–3–3–5 μs configuration). Midazolam (0.5 mg/kg) and xylazine hydrochloride (20 mg/kg) were given to induce sedation, followed by Isoflurane (2.5%, 100% oxygen, 3 L/min) to maintain sedation in all the swines. Limb lead ECG recordings were analyzed by two electrophysiologists to judge the arrhythmia. Cardiac and liver tissue was examined by pathology technique. Results The ablation zones were larger in H-FIRE than IRE. Both IRE and H-FIRE did not affect the autonomous cardiac rhythm. Even when the electrical signal of IRE and H-FIRE fell on ventricular vulnerable period. Moreover, cTnI in IRE group showed an increase in 4 h after ablation, and decreased to baseline 72 h after ablation. However, cTnI showed no significant change during the administration of H-FIRE. Conclusions The study suggests an asymmetrical waveform for H-FIRE is a promising measure for liver ablation. The results were based on normal liver and the swines without potential cardiac diseases. With the limitations of these facts, asymmetrical waveform for H-FIRE of liver tissue seems relatively safe without major cardiac complications. The safety of asymmetrical waveform for H-FIRE needs to evaluate in future.


MRS Advances ◽  
2018 ◽  
Vol 3 (62) ◽  
pp. 3723-3727
Author(s):  
C.G. Nava-Dino ◽  
R. Narro-Garcia ◽  
J.P. Flores De los Ríos ◽  
M.C. Maldonado-Orozco ◽  
N.L. Mendez-Mariscal ◽  
...  

ABSTRACTBy using electrochemical tests, small signal variations were study by digital signal processing techniques. Electrochemical noise and electrochemical polarization curves were very useful to obtained electrochemical behavior of alloys, but the low signal levels of measurements obtained showed that some of the information was not likely to be measured and, therefore, not being able to identify. Graphene oxides (GO) samples were prepared by ball milling procedure adding Lithium. SIGVIEW software was used for Digital Signal studies. Comparing, the signals obtained by electrochemical techniques and the research by computational tools; it was possible to find out a behavior path of samples. Display devices made by graphene were observed to provide new information about the structure of samples and how nanotechnology area can be improved. The current investigation aimed at maintaining electrochemical stability, since different deformations, as twisting and bending are quite relevant in portable electronics devices.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhehuang Huang ◽  
Yidong Chen

Exon recognition is a fundamental task in bioinformatics to identify the exons of DNA sequence. Currently, exon recognition algorithms based on digital signal processing techniques have been widely used. Unfortunately, these methods require many calculations, resulting in low recognition efficiency. In order to overcome this limitation, a two-stage exon recognition model is proposed and implemented in this paper. There are three main works. Firstly, we use synergetic neural network to rapidly determine initial exon intervals. Secondly, adaptive sliding window is used to accurately discriminate the final exon intervals. Finally, parameter optimization based on artificial fish swarm algorithm is used to determine different species thresholds and corresponding adjustment parameters of adaptive windows. Experimental results show that the proposed model has better performance for exon recognition and provides a practical solution and a promising future for other recognition tasks.


Sign in / Sign up

Export Citation Format

Share Document