Sub-5-ps electrical pulses for the characterization of high-frequency components

Author(s):  
M. Bieler ◽  
M. Spitzer ◽  
H. Lecher ◽  
G. Hein ◽  
U. Siegner
2019 ◽  
Vol 37 (4) ◽  
Author(s):  
Carlos Cunha Filho ◽  
Leonardo Teixeira Da Silva ◽  
Nathalia Souto Muniz Da Cruz ◽  
Andrea Damasceno ◽  
Tatiana Soares De Oliveira ◽  
...  

ABSTRACTThe identification of clay-rich layers is crucial for development of pre-salt reservoirs. They represent flow barriers and compromise the return of investment of the project if the thickness is misvalued. This issue becomes more relevant for thin clay-rich layers. The solution for the characterization of thin beds is classic: increase of the frequency bandwidth in seismic data. Here, we present a new methodology to derive high-frequency impedance volume. The approach starts with the recovery of low and high-frequency components in seismic data by the application of interactive deconvolution (iterdec). The extended bandwidth data is employed as an input amplitude data to the sparse-spike inversion. The outcome is a high-frequency acoustic impedance volume, which improves the interpretation of thin clay-rich layers. We present a study case of a presalt reservoir to demonstrate that this technique mitigated the location risk of an injection well and helped to maximize the oil swept of its vicinity. Furthermore, we discuss the required adaptations in the sparse-spike inversion workflow, and present the advantages of this approach when compared with conventional inversion results.Keywords: Inversion, resolution, broadband, pre-salt. RESUMOA identificação de camadas argilosas é crucial para o desenvolvimento de reservatórios do pre-sal. Elas atuam como barreira para o fluxo dos fluidos, comprometendo o retorno do investimento no projeto, caso sua espessura seja subavaliada. Esta questão se torna mais relevante no caso the camadas argilosas de pequena espessura. A solução para a caracterização de camadas finas é clássica: torna-se necessário aumentar a banda espectral do dado sísmico. O presente trabalho apresenta a metodologia e os primeiros resultados da incorporação de uma nova metodologia para geração de volumes de impedância de alta resolução. Nesta abordagem, os componentes de baixa e alta frequência do dado sísmico são recuperados através da aplicação de um processo de deconvolução iterativa (iterdec). Em seguida, este dado com banda espectral expandida é utilizado como entrada para uma inversão esparsa, resultando num volume de impedância acústica, que reduz as incertezas na interpretação de camadas argilosas de pouca espessura. Apresenta-se o estudo de caso de um reservatório do pre-sal para demonstrar a efetividade desta técnica na mitigação de risco associado ao posicionamento de um poço injetor, resultando na maximização da varredura de óleo em torno do poço. São apresentadas e discutidas as adaptações necessárias ao fluxo tradicional de inversão e condicionamento de dados sísmicos, bem como as vantagens da aplicação dessa metodologia sobre os resultados da inversão.Palavras-chave: Inversão, resolução, banda-larga, pre-sal.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


2010 ◽  
Vol 31 (3) ◽  
pp. 353-359
Author(s):  
Xiaoyan CHAI ◽  
Shuyong SHANG ◽  
Gaihuan LIU ◽  
Xumei TAO ◽  
Xiang LI ◽  
...  

2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Sign in / Sign up

Export Citation Format

Share Document