scholarly journals Study of a Current and Voltage Polarization Sensor Network

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4528
Author(s):  
Artur de Araujo Silva ◽  
Claudio Floridia ◽  
Joao Batista Rosolem

Sensors based on polarization are suitable for application in power grids due to their excellent characteristics, such as high electrical insulation, non-magnetic saturation, oil-free, no risk of explosive failures, and high bandwidth. Utility companies are incorporating new technologies that are driving the evolution of electrical systems. Thus, it is interesting to evaluate the possibility of using polarization sensors in a network configuration. In this work, we present an experimental study of a current and voltage polarization sensor network applied to a medium voltage distribution grid. The current sensor is based on the Faraday effect, and the voltage sensor uses the Pockels effect. Both sensors use a 90° polarization degree between the two output ports to compensate for the various impairments on the measurements by applying the difference-over-sum. The network uses a DWDM topology centered at the 1550 nm range, and both current and voltage sensors in this work used this spectral band. We evaluated the sensor node in terms of accuracy according to IEC standard 61869-10 and IEC standard 61869-11. Considering that an important application of this sensor network is in the aerial cable of medium voltage networks, sensor node accuracy was also estimated in the presence of cable vibration. The calculated power budget of the proposed network indicates that reaching ten nodes of current and voltage sensors in a 10 km optical link is possible, which is enough for a medium urban voltage distribution network.

2013 ◽  
Vol 133 (4) ◽  
pp. 414-420 ◽  
Author(s):  
Tsuyoshi Suzuki ◽  
Takafumi Kobayashi ◽  
Kei Sawai ◽  
Kuniaki Kawabata ◽  
Fumiaki Takemura ◽  
...  

Author(s):  
Benbouza Naima ◽  
Benfarhi Louiza ◽  
Azoui Boubekeur

Background: The improvement of the voltage in power lines and the respect of the low voltage distribution transformer substations constraints (Transformer utilization rate and Voltage drop) are possible by several means: reinforcement of conductor sections, installation of new MV / LV substations (Medium Voltage (MV), Low Voltage (LV)), etc. Methods: Connection of mini-photovoltaic systems (PV) to the network, or to consumers in underserved areas, is a well-adopted solution to solve the problem of voltage drop and lighten the substation transformer, and at the same time provide clean electrical energy. PV systems can therefore contribute to this solution since they produce energy at the deficit site. Results: This paper presents the improvement of transformer substation constraints, supplying an end of low voltage electrical line, by inserting photovoltaic systems at underserved subscribers. Conclusion: This study is applied to a typical load pattern, specified to the consumers region.


2009 ◽  
Author(s):  
H.R.P.M. de Oliveira ◽  
E.L. Batista ◽  
C. Lefort ◽  
C. de Salles ◽  
M.L.B. Martinez

Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Sign in / Sign up

Export Citation Format

Share Document