scholarly journals Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5415
Author(s):  
Ewa Swiercz ◽  
Dariusz Janczak ◽  
Krzysztof Konopko

Linear frequency-modulated (LFM) signals are the most significant example of waveform used in low probability of intercept (LPI) radars, synthetic aperture radars and modern communication systems. Thus, interception and parameter estimation of the signals is one of the challenges in Electronic Support (ES) systems. The methods, which are widely used to accomplish this task are mainly based on transformations from time to time-frequency domain, which concentrate the energy of signals along an instantaneous frequency (IF) line. The most popular examples of such transforms are the short time Fourier transform (STFT) and Wigner-Ville distribution (WVD). However, for LFM waveforms, methods that concentrate signal energy along a line in the time-frequency rate domain may allow to obtain better detection and estimation performance. This type of transformation can be obtained using the cubic phase (CP) function (CPF). In the paper, the detection of LFM waveform and its chirp rate (CR) parameter estimation based on the extended forms of the standard CPF is proposed. The CPF was originally introduced for instantaneous frequency rate (IFR) estimation for quadratic frequency modulated (QFM) signals i.e., cubic phase signals. Summation or multiplication operations on time cross-sections of the CPF allow to formulate the extended forms of the CPF. Based on these forms, detection test statistics and the estimation procedure of LFM signal parameters have been proposed. The widely known estimation methods assure satisfying accuracy for high SNR levels, but for low SNRs the reliable estimation is a challenge. The proposed approach based on joint analysis of detection and estimation characteristics allows to increase the reliability of chirp rate estimates for low SNRs. The results of Monte-Carlo simulation investigations on LFM signal detection and chirp rate estimation evaluated by the mean squared error (MSE) obtained by the proposed methods with comparisons to the Cramer-Rao lower bound (CRLB) are presented.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1477 ◽  
Author(s):  
Xinqun Liu ◽  
Tao Li ◽  
Xiaolei Fan ◽  
Zengping Chen

The Nyquist folding receiver (NYFR) can achieve a high-probability interception of an ultra-wideband (UWB) signal with fewer devices, while the output of the NYFR is converted into a hybrid modulated signal of the local oscillator (LO) and the received signal, which requires the matching parameter estimation methods. The linear frequency modulation (LFM) signal is a typical low probability of intercept (LPI) radar signal. In this paper, an estimation method of both the Nyquist Zone (NZ) index and the chirp rate for the LFM signal intercepted by NYFR was proposed. First, according to the time-frequency characteristics of the LFM signal, the accurate NZ and the rough chirp rate was estimated based on least squares (LS) and random sample consensus (RANSAC). Then, the information of the LO was removed from the hybrid modulated signal by the known NZ, and the precise chirp rate was obtained by using the fractional Fourier transform (FrFT). Moreover, a fast search method of FrFT optimal order was presented, which could obviously reduce the computational complexity. The simulation demonstrated that the proposed method could precisely estimate the parameters of the hybrid modulated output signal of the NYFR.


2013 ◽  
Vol 380-384 ◽  
pp. 3726-3729
Author(s):  
Peng Fei Tang ◽  
Bin Yuan ◽  
Qian Qiang Lin ◽  
Zeng Ping Chen

This paper presents an algorithm for estimating the parameters of multicomponent cubic phase signals. This algorithm combines the product generalized cubic phase function (PGCPF) and the product cubic phase function (PCPF) which are used to estimate the cubic phase coefficient and chirp rate of the cubic phase signal, respectively. This algorithm starts by estimating the parameters of the signal component with the strongest amplitude. Then removing the signal component whose parameters have been estimated, it proceeds to estimate the next signal component, and so on, until all of the signal components have been estimated. Numerical simulations are carried out to validate the performance of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document