scholarly journals Surface Roughness Effects on Self-Interacting and Mutually Interacting Rayleigh Waves

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5495
Author(s):  
Chaitanya Bakre ◽  
Cliff J. Lissenden

Rayleigh waves are very useful for ultrasonic nondestructive evaluation of structural and mechanical components. Nonlinear Rayleigh waves have unique sensitivity to the early stages of material degradation because material nonlinearity causes distortion of the waveforms. The self-interaction of a sinusoidal waveform causes second harmonic generation, while the mutual interaction of waves creates disturbances at the sum and difference frequencies that can potentially be detected with minimal interaction with the nonlinearities in the sensing system. While the effect of surface roughness on attenuation and dispersion is well documented, its effects on the nonlinear aspects of Rayleigh wave propagation have not been investigated. Therefore, Rayleigh waves are sent along aluminum surfaces having small, but different, surface roughness values. The relative nonlinearity parameter increased significantly with surface roughness (average asperity heights 0.027–3.992 μm and Rayleigh wavelengths 0.29–1.9 mm). The relative nonlinearity parameter should be decreased by the presence of attenuation, but here it actually increased with roughness (which increases the attenuation). Thus, an attenuation-based correction was unsuccessful. Since the distortion from material nonlinearity and surface roughness occur over the same surface, it is necessary to make material nonlinearity measurements over surfaces having the same roughness or in the future develop a quantitative understanding of the roughness effect on wave distortion.

2016 ◽  
Vol 99 ◽  
pp. 305-311 ◽  
Author(s):  
Ilenia Farina ◽  
Francesco Fabbrocino ◽  
Francesco Colangelo ◽  
Luciano Feo ◽  
Fernando Fraternali

2013 ◽  
Vol 20 (12) ◽  
pp. 2261-2269 ◽  
Author(s):  
Gaurav Pendharkar ◽  
Raghavendra Deshmukh ◽  
Rajendra Patrikar

1969 ◽  
Vol 6 (8) ◽  
pp. 955-957 ◽  
Author(s):  
R. G. HERING ◽  
T. F. SMITH

1999 ◽  
Vol 27 (5) ◽  
pp. 450-460 ◽  
Author(s):  
P.-Å. Krogstadt ◽  
R.A. Antonia

1980 ◽  
Vol 102 (3) ◽  
pp. 360-366 ◽  
Author(s):  
J. L. Teale ◽  
A. O. Lebeck

The average flow model presented by Patir and Cheng [1] is evaluated. First, it is shown that the choice of grid used in the average flow model influences the results. The results presented are different from those given by Patir and Cheng. Second, it is shown that the introduction of two-dimensional flow greatly reduces the effect of roughness on flow. Results based on one-dimensional flow cannot be relied upon for two-dimensional problems. Finally, some average flow factors are given for truncated rough surfaces. These can be applied to partially worn surfaces. The most important conclusion reached is that an even closer examination of the average flow concept is needed before the results can be applied with confidence to lubrication problems.


Sign in / Sign up

Export Citation Format

Share Document