scholarly journals Cyber-Physical Vulnerability Assessment in Smart Grids Based on Multilayer Complex Networks

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5826
Author(s):  
Monica Alonso ◽  
Jaime Turanzas ◽  
Hortensia Amaris ◽  
Angel T. Ledo

In the last decade, the main attacks against smart grids have occurred in communication networks (ITs) causing the disconnection of physical equipment from power networks (OTs) and leading to electricity supply interruptions. To deal with the deficiencies presented in past studies, this paper addresses smart grids vulnerability assessment considering the smart grid as a cyber-physical heterogeneous interconnected system. The model of the cyber-physical system is composed of a physical power network model and the information and communication technology network model (ICT) both are interconnected and are interrelated by means of the communication and control equipment installed in the smart grid. This model highlights the hidden interdependencies between power and ICT networks and contains the interaction between both systems. To mimic the real nature of smart grids, the interconnected heterogeneous model is based on multilayer complex network theory and scale-free graph, where there is a one-to-many relationship between cyber and physical assets. Multilayer complex network theory centrality indexes are used to determine the interconnected heterogeneous system set of nodes criticality. The proposed methodology, which includes measurement, communication, and control equipment, has been tested on a standardized power network that is interconnected to the ICT network. Results demonstrate the model’s effectiveness in detecting vulnerabilities in the interdependent cyber-physical system compared to traditional vulnerability assessments applied to power networks (OT).

Author(s):  
Chethan Parthasarathy ◽  
Hossein Hafezi ◽  
Hannu Laaksonen

AbstractLithium-ion battery energy storage systems (Li-ion BESS), due to their capability in providing both active and reactive power services, act as a bridging technology for efficient implementation of active network management (ANM) schemes for land-based grid applications. Due to higher integration of intermittent renewable energy sources in the distribution system, transient instability may induce power quality issues, mainly in terms of voltage fluctuations. In such situations, ANM schemes in the power network are a possible solution to maintain operation limits defined by grid codes. However, to implement ANM schemes effectively, integration and control of highly flexible Li-ion BESS play an important role, considering their performance characteristics and economics. Hence, in this paper, an energy management system (EMS) has been developed for implementing the ANM scheme, particularly focusing on the integration design of Li-ion BESS and the controllers managing them. Developed ANM scheme has been utilized to mitigate MV network issues (i.e. voltage stability and adherence to reactive power window). The efficiency of Li-ion BESS integration methodology, performance of the EMS controllers to implement ANM scheme and the effect of such ANM schemes on integration of Li-ion BESS, i.e. control of its grid-side converter (considering operation states and characteristics of the Li-ion BESS) and their coordination with the grid side controllers have been validated by means of simulation studies in the Sundom smart grid network, Vaasa, Finland.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1630 ◽  
Author(s):  
Luis Hernández-Callejo

New technological advances based on software, hardware and new materials must be implemented in smart grids. In addition, these advanced electrical grids must incorporate elements of artificial intelligence. Advances in software development must be complemented with the development of new hardware (power electronics and active distribution among others). The aforementioned must rely on the development of new materials and sensors, which should be integrated into the smart grid. Therefore, the four areas of research based on the technologies are: Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering. The review presents the algorithms, materials, devices and others paradigms applied to smart grids, classifying the works according to the four areas of research. This review has focused on the four fundamental pillars of smart grids, on the one hand, the need for more efficient operation and control, followed by advanced maintenance management, to continue planning and designing the new grids, and for conclude with the advanced measurement. As you will see in the article, new devices, new techniques, and future scenarios will make possible the transition from the current grid to the future smart grid.


Sign in / Sign up

Export Citation Format

Share Document