scholarly journals A Novel Analytical Design Technique for a Wideband Wilkinson Power Divider Using Dual-Band Topology

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6330
Author(s):  
Asif I. Omi ◽  
Rakibul Islam ◽  
Mohammad A. Maktoomi ◽  
Christine Zakzewski ◽  
Praveen Sekhar

In this paper, a novel analytical design technique is presented to implement a coupled-line wideband Wilkinson power divider (WPD). The configuration of the WPD is comprised of three distinct coupled-line and three isolation resistors. A comprehensive theoretical analysis is conducted to arrive at a set of completely new and rigorous design equations utilizing the dual-band behavior of commensurate transmission lines. Further, the corresponding S-parameters equations are also derived, which determine the wideband capability of the proposed WPD. To validate the proposed design concept, a prototype working at the resonance frequencies of 0.9 GHz and 1.8 GHz is designed and fabricated using 60 mils thick Rogers’ RO4003C substrate. The measured result of the fabricated prototype exhibits an excellent input return loss > 16.4 dB, output return loss > 15 dB, insertion loss < 3.30 dB and a remarkable isolation > 22 dB within the band and with a 15 dB and 10 dB references provide a fractional bandwidth of 110% and 141%, respectively.

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2332
Author(s):  
Asif I. Omi ◽  
Zeba N. Zafar ◽  
Hussain Al-Shakhori ◽  
Aubrey N. Savage ◽  
Rakibul Islam ◽  
...  

In this paper, a new analytical design technique for a three-section wideband Wilkinson power divider is presented. The proposed design technique utilizes the dual-frequency behavior of commensurate transmission lines for the even-mode analysis and contributes a set of completely new and rigorous design equations for the odd-mode analysis. Measurement of a fabricated prototype utilizing the proposed technique shows an excellent return-loss (>16 dB), insertion loss (<3.35 dB), and excellent isolation (>22.7 dB) over 104% fractional bandwidth extending beyond the minimum requirements.


2022 ◽  
Vol 12 (2) ◽  
pp. 875
Author(s):  
Nan Zhang ◽  
Xiaolong Wang ◽  
Chunxi Bao ◽  
Bin Wu ◽  
Chun-Ping Chen ◽  
...  

In this paper, a novel synthetization approach is proposed for filter-integrated wideband impedance transformers (ITs). The original topology consists of N cascaded coupled line sections (CLSs) with 2N characteristic impedance parameters. By analyzing these characteristic impedances, a Chebyshev response can be derived to consume N + 2 design conditions. To optimize the left N − 2 variable parameters, CLSs were newly substituted by transmission lines (TLs) to consume the remaining variable parameters and simplify the circuit topology. Therefore, there are totally 2N − N − 2 substituting possibilities. To verify the proposed approach, 25 cases are listed under the condition of N = 5, and 7 selected cases are compared and discussed in detail. Finally, a 75–50 Ω IT with 100% fractional bandwidth and 20 dB bandpass return loss (RL) is designed and fabricated. The measured results meet the circuit simulation and the EM simulation accurately.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450135
Author(s):  
YONGLE WU ◽  
QIANG LIU ◽  
JUNYU SHEN ◽  
YUANAN LIU

A Wilkinson power divider with improved bandpass filtering and high isolation performance is proposed. These characteristics are achieved by replacing the quarter-wavelength transmission line in the conventional coupled line Wilkinson power divider with quarter-wavelength side-coupled ring (QSCR). Additional features such as DC blocking between arbitrary two ports, single-layer via-less structure for low-cost fabrication and convenient integration (as only one isolation resistor required) are highlighted. A 2-GHz Wilkinson microstrip power divider with a fractional bandwidth of 4% has been fabricated and experimentally characterized. The consistency between simulated and measured results validates the effectiveness of our proposed design.


2012 ◽  
Vol 129 ◽  
pp. 197-214 ◽  
Author(s):  
Jiuchao Li ◽  
Yongle Wu ◽  
Yuanan Liu ◽  
Junyu Shen ◽  
Shulan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document