scholarly journals Retrieval of Raindrop Size Distribution Using Dual-Polarized Microwave Signals from LEO Satellites: A Feasibility Study through Simulations

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6389
Author(s):  
Xi Shen ◽  
Defeng David Huang

In this paper, a novel approach for raindrop size distribution retrieval using dual-polarized microwave signals from low Earth orbit satellites is proposed. The feasibility of this approach is studied through modelling and simulating the retrieval system which includes multiple ground receivers equipped with signal-to-noise ratio estimators and a low Earth orbit satellite communicating with the receivers using both vertically and horizontally polarized signals. Our analysis suggests that the dual-polarized links offer the opportunity to estimate two independent raindrop size distribution parameters. To achieve that, the vertical and horizontal polarization attenuations need to be measured at low elevation angles where the difference between them is more distinct. Two synthetic rain fields are generated to test the performance of the retrieval. Simulation results suggest that the specific attenuations for both link types can be retrieved through a least-squares algorithm. They also confirm that the specific attenuation ratio of vertically to horizontally polarized signals can be used to retrieve the slope and intercept parameters of raindrop size distribution.

2014 ◽  
Vol 31 (2) ◽  
pp. 387-403 ◽  
Author(s):  
Eiichi Yoshikawa ◽  
V. Chandrasekar ◽  
Tomoo Ushio

Abstract A raindrop size distribution (DSD) retrieval method for a dual-polarization radar at attenuating frequency is proposed. The proposed method is developed such that the range profiles of the gamma DSD parameters, an intercept parameter Nw (mm−1 m−3), and a median volume diameter D0 (mm) can be estimated to match the dual-polarization measurements, measured equivalent reflectivity at horizontal polarization ZHm, measured differential reflectivity ZDRm, and measured differential propagation phase ΦDPm, where the forward scattering and backscattering are formulated simultaneously to avoid the two-step process of attenuation correction and DSD retrieval. Additionally, the proposed method does not have the attenuation-correction errors accumulated along range that traditional forward and backward processes have, since the range profiles of the DSD parameters are optimized in a radar beam simultaneously. In the simulation, the proposed algorithm showed fairly good accuracies for retrievals Nw and D0. Errors with the different axis ratio models or calibration biases in ZHm and ZDRm, which contaminate assumptions of the proposed method in real observational data, were also evaluated. Under a Gaussian fluctuation model, the estimation process, known as an iterative maximum-likelihood estimator, derives the best estimation in the statistical fluctuation conditions. This scheme could be extended to duplicative observation such as a radar network environment.


2003 ◽  
Vol 60 (2) ◽  
pp. 354-365 ◽  
Author(s):  
V. N. Bringi ◽  
V. Chandrasekar ◽  
J. Hubbert ◽  
E. Gorgucci ◽  
W. L. Randeu ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 348
Author(s):  
Ningkun Ma ◽  
Liping Liu ◽  
Yichen Chen ◽  
Yang Zhang

A squall line is a type of strongly organized mesoscale convective system that can cause severe weather disasters. Thus, it is crucial to explore the dynamic structure and hydrometeor distributions in squall lines. This study analyzed a squall line over Guangdong Province on 6 May 2016 that was observed using a Ka-band millimeter-wave cloud radar (CR) and an S-band dual-polarization radar (PR). Doppler spectral density data obtained by the CR were used to retrieve the vertical air motions and raindrop size distribution (DSD). The results showed the following: First, the CR detected detailed vertical profiles and their evolution before and during the squall line passage. In the convection time segment (segment B), heavy rain existed with a reflectivity factor exceeding 35 dBZ and a velocity spectrum width exceeding 1.3 m s−1. In the PR detection, the differential reflectivity factor (Zdr) was 1–2 dB, and the large specific differential phase (Kdp) also represented large liquid water content. In the transition and stratiform cloud time segments (segments B and C), the rain stabilized gradually, with decreasing cloud tops, stable precipitation, and a 0 °C layer bright band. Smaller Kdp values (less than 0.9) were distributed around the 0 °C layer, which may have been caused by the melting of ice crystal particles. Second, from the CR-retrieved vertical air velocity, before squall line passage, downdrafts dominated in local convection and weak updrafts existed in higher-altitude altostratus clouds. In segment B, the updraft air velocity reached more than 8 m s−1 below the 0 °C layer. From segments C to D, the updrafts changed gradually into weak and wide-ranging downdrafts. Third, in the comparison of DSD values retrieved at 1.5 km and DSD values on the ground, the retrieved DSD line was lower than the disdrometer, the overall magnitude of the DSD retrieved was smaller, and the difference decreased from segments C to D. The standardized intercept parameter (Nw) and shape parameter (μ) of the DSD retrieved at 1.8 km showed good agreement with the disdrometer results, and the mass-weighted mean diameter (Dm) was smaller than that on the ground, but very close to the PR-retrieved Dm result at 2 km. Therefore, comparing with the DSD retrieved at around 2 km, the overall number concentration remained unchanged and Dm got larger on the ground, possibly reflecting the process of raindrop coalescence. Lastly, the average vertical profiles of several quantities in all segments showed that, first of all, the decrease of Nw and Dm with height in segments C and D was similar, reflecting the collision effect of falling raindrops. The trends were opposite in segment B, indicating that raindrops underwent intense mixing and rapid collision and growth in this segment. Then, PR-retrieved Dm profiles can verify the rationality of the CR-retrieved Dm. Finally, a vertical velocity profile peak generated a larger Dm especially in segments C and D.


2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


2018 ◽  
Vol 123 (20) ◽  
pp. 11,602-11,624 ◽  
Author(s):  
Balaji Kumar Seela ◽  
Jayalakshmi Janapati ◽  
Pay-Liam Lin ◽  
Pao K. Wang ◽  
Meng-Tze Lee

Sign in / Sign up

Export Citation Format

Share Document