scholarly journals Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6499
Author(s):  
Shuyang Li ◽  
Xiaohui Hu ◽  
Yongwen Du

Computation offloading technology extends cloud computing to the edge of the access network close to users, bringing many benefits to terminal devices with limited battery and computational resources. Nevertheless, the existing computation offloading approaches are challenging to apply to specific scenarios, such as the dense distribution of end-users and the sparse distribution of network infrastructure. The technological revolution in the unmanned aerial vehicle (UAV) and chip industry has granted UAVs more computing resources and promoted the emergence of UAV-assisted mobile edge computing (MEC) technology, which could be applied to those scenarios. However, in the MEC system with multiple users and multiple servers, making reasonable offloading decisions and allocating system resources is still a severe challenge. This paper studies the offloading decision and resource allocation problem in the UAV-assisted MEC environment with multiple users and servers. To ensure the quality of service for end-users, we set the weighted total cost of delay, energy consumption, and the size of discarded tasks as our optimization objective. We further formulate the joint optimization problem as a Markov decision process and apply the soft actor–critic (SAC) deep reinforcement learning algorithm to optimize the offloading policy. Numerical simulation results show that the offloading policy optimized by our proposed SAC-based dynamic computing offloading (SACDCO) algorithm effectively reduces the delay, energy consumption, and size of discarded tasks for the UAV-assisted MEC system. Compared with the fixed local-UAV scheme in the specific simulation setting, our proposed approach reduces system delay and energy consumption by approximately 50% and 200%, respectively.

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987902 ◽  
Author(s):  
Ronglei Xie ◽  
Zhijun Meng ◽  
Yaoming Zhou ◽  
Yunpeng Ma ◽  
Zhe Wu

In order to solve the problem that the existing reinforcement learning algorithm is difficult to converge due to the excessive state space of the three-dimensional path planning of the unmanned aerial vehicle, this article proposes a reinforcement learning algorithm based on the heuristic function and the maximum average reward value of the experience replay mechanism. The knowledge of track performance is introduced to construct heuristic function to guide the unmanned aerial vehicles’ action selection and reduce the useless exploration. Experience replay mechanism based on maximum average reward increases the utilization rate of excellent samples and the convergence speed of the algorithm. The simulation results show that the proposed three-dimensional path planning algorithm has good learning efficiency, and the convergence speed and training performance are significantly improved.


Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 856-874
Author(s):  
S. Anoop ◽  
Dr.J. Amar Pratap Singh

Mobile technologies is evolving so rapidly in every aspect, utilizing every single resource in the form of applications which creates advancement in day to day life. This technological advancements overcomes the traditional computing methods which increases communication delay, energy consumption for mobile devices. In today’s world, Mobile Edge Computing is evolving as a scenario for improving in these limitations so as to provide better output to end users. This paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks done using the LSTM algorithm. A strategy for computation offloading based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling based on a reinforcement learning routing algorithm help to optimize the edge computing offloading model. Experimental results show that our proposed algorithm Intelligent Energy Efficient Offloading Algorithm (IEEOA), can efficiently decrease total task delay and energy consumption, and bring much security to the devices due to the firewall nature of LSTM.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Ping Qi

Traditional intent recognition algorithms of intelligent prosthesis often use deep learning technology. However, deep learning’s high accuracy comes at the expense of high computational and energy consumption requirements. Mobile edge computing is a viable solution to meet the high computation and real-time execution requirements of deep learning algorithm on mobile device. In this paper, we consider the computation offloading problem of multiple heterogeneous edge servers in intelligent prosthesis scenario. Firstly, we present the problem definition and the detail design of MEC-based task offloading model for deep neural network. Then, considering the mobility of amputees, the mobility-aware energy consumption model and latency model are proposed. By deploying the deep learning-based motion intent recognition algorithm on intelligent prosthesis in a real-world MEC environment, the effectiveness of the task offloading and scheduling strategy is demonstrated. The experimental results show that the proposed algorithms can always find the optimal task offloading and scheduling decision.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 372
Author(s):  
Dongji Li ◽  
Shaoyi Xu ◽  
Pengyu Li

With the rapid development of vehicular networks, vehicle-to-everything (V2X) communications have huge number of tasks to be calculated, which brings challenges to the scarce network resources. Cloud servers can alleviate the terrible situation regarding the lack of computing abilities of vehicular user equipment (VUE), but the limited resources, the dynamic environment of vehicles, and the long distances between the cloud servers and VUE induce some potential issues, such as extra communication delay and energy consumption. Fortunately, mobile edge computing (MEC), a promising computing paradigm, can ameliorate the above problems by enhancing the computing abilities of VUE through allocating the computational resources to VUE. In this paper, we propose a joint optimization algorithm based on a deep reinforcement learning algorithm named the double deep Q network (double DQN) to minimize the cost constituted of energy consumption, the latency of computation, and communication with the proper policy. The proposed algorithm is more suitable for dynamic scenarios and requires low-latency vehicular scenarios in the real world. Compared with other reinforcement learning algorithms, the algorithm we proposed algorithm improve the performance in terms of convergence, defined cost, and speed by around 30%, 15%, and 17%.


Sign in / Sign up

Export Citation Format

Share Document