scholarly journals Self-Regulated Particle Swarm Multi-Task Optimization

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7499
Author(s):  
Xiaolong Zheng ◽  
Deyun Zhou ◽  
Na Li ◽  
Tao Wu ◽  
Yu Lei ◽  
...  

Population based search techniques have been developed and applied to wide applications for their good performance, such as the optimization of the unmanned aerial vehicle (UAV) path planning problems. However, the search for optimal solutions for an optimization problem is usually expensive. For example, the UAV problem is a large-scale optimization problem with many constraints, which makes it hard to get exact solutions. Especially, it will be time-consuming when multiple UAV problems are waiting to be optimized at the same time. Evolutionary multi-task optimization (EMTO) studies the problem of utilizing the population-based characteristics of evolutionary computation techniques to optimize multiple optimization problems simultaneously, for the purpose of further improving the overall performance of resolving all these problems. EMTO has great potential in solving real-world problems more efficiently. Therefore, in this paper, we develop a novel EMTO algorithm using a classical PSO algorithm, in which the developed knowledge transfer strategy achieves knowledge transfer between task by synthesizing the transferred knowledges from a selected set of component tasks during the updating of the velocities of population. Two knowledge transfer strategies are developed along with two versions of the proposed algorithm. The proposed algorithm is compared with the multifactorial PSO algorithm, the SREMTO algorithm, the popular multifactorial evolutionary algorithm and a classical PSO algorithm on nine popular single-objective MTO problems and six five-task MTO problems, which demonstrates its superiority.

2018 ◽  
Vol 7 (3.28) ◽  
pp. 72
Author(s):  
Siti Farhana Husin ◽  
Mustafa Mamat ◽  
Mohd Asrul Hery Ibrahim ◽  
Mohd Rivaie

In this paper, we develop a new search direction for Steepest Descent (SD) method by replacing previous search direction from Conjugate Gradient (CG) method, , with gradient from the previous step,  for solving large-scale optimization problem. We also used one of the conjugate coefficient as a coefficient for matrix . Under some reasonable assumptions, we prove that the proposed method with exact line search satisfies descent property and possesses the globally convergent. Further, the numerical results on some unconstrained optimization problem show that the proposed algorithm is promising. 


2012 ◽  
Vol 479-481 ◽  
pp. 344-347
Author(s):  
Zhuo Li ◽  
Xue Luo Qu

Particle Swarm Optimization (PSO) is a novel artificial intelligent technique proposed by Eberhart and Kennedy which is a type of Swarm Intelligence. PSO is simulated as population-based stochastic optimization influenced by the social behavior of bird flocks. In past decades, more and more researcher has been targeting to improve the original PSO for solving various problems and it has great potential to be done further. This paper reviews the progress of PSO research so far, and the recent achievements for application to large-scale optimization problems.


2012 ◽  
Vol 236-237 ◽  
pp. 1190-1194
Author(s):  
Wen Hua Han ◽  
Xu Chen ◽  
Jun Xu

This paper proposed a cooperative coevolving particle swarm optimization base on principal component analysis (PCA-CCPSO) algorithm for large-scale and complex problem. In this algorithm, PCA are used to pick up the available particles which gathered the important information of the initialized particles for CCPSO. The Cauchy and Gaussian distributions are used to update the position of the particles and the coevolving subcomponent size of the particles is determined dynamically. The experimental results demonstrate that the convergence speed of PCA-CCPSO is faster than that of CCPSO in solving the large-scale and complex multimodal optimization problems.


Author(s):  
Jie Guo ◽  
Zhong Wan

A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems. It is proved that the search directions in this algorithm always satisfy a sufficiently descent condition independent of any line search. Global convergence is established for general objective functions if the strong Wolfe line search is used. Numerical experiments are employed to show its high numerical performance in solving large-scale optimization problems. Particularly, the developed algorithm is implemented to solve the 100 benchmark test problems from CUTE with different sizes from 1000 to 10,000, in comparison with some similar ones in the literature. The numerical results demonstrate that our algorithm outperforms the state-of-the-art ones in terms of less CPU time, less number of iteration or less number of function evaluation.


2017 ◽  
Vol 59 ◽  
pp. 340-362 ◽  
Author(s):  
Prabhujit Mohapatra ◽  
Kedar Nath Das ◽  
Santanu Roy

Sign in / Sign up

Export Citation Format

Share Document