scholarly journals A Moving Ship Detection and Tracking Method Based on Optical Remote Sensing Images from the Geostationary Satellite

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7547
Author(s):  
Wei Yu ◽  
Hongjian You ◽  
Peng Lv ◽  
Yuxin Hu ◽  
Bing Han

Geostationary optical remote sensing satellites, such as the GF-4, have a high temporal resolution and wide coverage, which enables the continuous tracking and observation of ship targets over a large range. However, the ship targets in the images are usually small and dim and the images are easily affected by clouds, islands and other factors, which make it difficult to detect the ship targets. This paper proposes a new method for detecting ships moving on the sea surface using GF-4 satellite images. First, the adaptive nonlinear gray stretch (ANGS) method was used to enhance the image and highlight small and dim ship targets. Second, a multi-scale dual-neighbor difference contrast measure (MDDCM) method was designed to enable detection of the position of the candidate ship target. The shape characteristics of each candidate area were analyzed to remove false ship targets. Finally, the joint probability data association (JPDA) method was used for multi-frame data association and tracking. Our results suggest that the proposed method can effectively detect and track moving ship targets in GF-4 satellite optical remote sensing images, with better detection performance than other classical methods.

2021 ◽  
Vol 13 (17) ◽  
pp. 3362
Author(s):  
Ruchan Dong ◽  
Licheng Jiao ◽  
Yan Zhang ◽  
Jin Zhao ◽  
Weiyan Shen

Deep convolutional neural networks (DCNNs) are driving progress in object detection of high-resolution remote sensing images. Region proposal generation, as one of the key steps in object detection, has also become the focus of research. High-resolution remote sensing images usually contain various sizes of objects and complex background, small objects are easy to miss or be mis-identified in object detection. If the recall rate of region proposal of small objects and multi-scale objects can be improved, it will bring an improvement on the performance of the accuracy in object detection. Spatial attention is the ability to focus on local features in images and can improve the learning efficiency of DCNNs. This study proposes a multi-scale spatial attention region proposal network (MSA-RPN) for high-resolution optical remote sensing imagery. The MSA-RPN is an end-to-end deep learning network with a backbone network of ResNet. It deploys three novel modules to fulfill its task. First, the Scale-specific Feature Gate (SFG) focuses on features of objects by processing multi-scale features extracted from the backbone network. Second, the spatial attention-guided model (SAGM) obtains spatial information of objects from the multi-scale attention maps. Third, the Selective Strong Attention Maps Model (SSAMM) adaptively selects sliding windows according to the loss values from the system’s feedback, and sends the windowed samples to the spatial attention decoder. Finally, the candidate regions and their corresponding confidences can be obtained. We evaluate the proposed network in a public dataset LEVIR and compare with several state-of-the-art methods. The proposed MSA-RPN yields a higher recall rate of region proposal generation, especially for small targets in remote sensing images.


2019 ◽  
Vol 11 (18) ◽  
pp. 2095 ◽  
Author(s):  
Kun Fu ◽  
Zhuo Chen ◽  
Yue Zhang ◽  
Xian Sun

In recent years, deep learning has led to a remarkable breakthrough in object detection in remote sensing images. In practice, two-stage detectors perform well regarding detection accuracy but are slow. On the other hand, one-stage detectors integrate the detection pipeline of two-stage detectors to simplify the detection process, and are faster, but with lower detection accuracy. Enhancing the capability of feature representation may be a way to improve the detection accuracy of one-stage detectors. For this goal, this paper proposes a novel one-stage detector with enhanced capability of feature representation. The enhanced capability benefits from two proposed structures: dual top-down module and dense-connected inception module. The former efficiently utilizes multi-scale features from multiple layers of the backbone network. The latter both widens and deepens the network to enhance the ability of feature representation with limited extra computational cost. To evaluate the effectiveness of proposed structures, we conducted experiments on horizontal bounding box detection tasks on the challenging DOTA dataset and gained 73.49% mean Average Precision (mAP), achieving state-of-the-art performance. Furthermore, our method ran significantly faster than the best public two-stage detector on the DOTA dataset.


Sign in / Sign up

Export Citation Format

Share Document