scholarly journals Detection and Characterization of Multiple Discontinuities in Cables with Time-Domain Reflectometry and Convolutional Neural Networks

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8032
Author(s):  
Marco Scarpetta ◽  
Maurizio Spadavecchia ◽  
Francesco Adamo ◽  
Mattia Alessandro Ragolia ◽  
Nicola Giaquinto

In this paper, a convolutional neural network for the detection and characterization of impedance discontinuity points in cables is presented. The neural network analyzes time-domain reflectometry signals and produces a set of estimated discontinuity points, each of them characterized by a class describing the type of discontinuity, a position, and a value quantifying the entity of the impedance discontinuity. The neural network was trained using a great number of simulated signals, obtained with a transmission line simulator. The transmission line model used in simulations was calibrated using data obtained from stepped-frequency waveform reflectometry measurements, following a novel procedure presented in the paper. After the training process, the neural network model was tested on both simulated signals and measured signals, and its detection and accuracy performances were assessed. In experimental tests, where the discontinuity points were capacitive faults, the proposed method was able to correctly identify 100% of the discontinuity points, and to estimate their position and entity with a root-mean-squared error of 13 cm and 14 pF, respectively.

2018 ◽  
Vol 23 (4) ◽  
pp. 437-442
Author(s):  
Raffaele Persico ◽  
Iman Farhat ◽  
Lourdes Farrugia ◽  
Sebastiano D'Amico ◽  
Charles Sammut

In this paper we propose a study regarding some possibilities that can be offered by a time domain reflectometry (TDR) probe in retrieving both dielectric and magnetic properties of materials. This technique can be of interest for several applications, among which the characterization of soil in some situations. In particular, here we propose an extension of the paper “Retrieving electric and magnetic propetries of the soil in situ: New possibilities”, presented at the IWAGPR, held in Edinburgh in 2017, and as a new contribution we will validate a transmission line model with numerical data simulated by the CST code.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oluwafemi Ajayi ◽  
Reolyn Heymann

Purpose Energy management is critical to data centres (DCs) majorly because they are high energy-consuming facilities and demand for their services continue to rise due to rapidly increasing global demand for cloud services and other technological services. This projected sectoral growth is expected to translate into increased energy demand from the sector, which is already considered a major energy consumer unless innovative steps are used to drive effective energy management systems. The purpose of this study is to provide insights into the expected energy demand of the DC and the impact each measured parameter has on the building's energy demand profile. This serves as a basis for the design of an effective energy management system. Design/methodology/approach This study proposes novel tunicate swarm algorithm (TSA) for training an artificial neural network model used for predicting the energy demand of a DC. The objective is to find the optimal weights and biases of the model while avoiding commonly faced challenges when using the backpropagation algorithm. The model implementation is based on historical energy consumption data of an anonymous DC operator in Cape Town, South Africa. The data set provided consists of variables such as ambient temperature, ambient relative humidity, chiller output temperature and computer room air conditioning air supply temperature, which serve as inputs to the neural network that is designed to predict the DC’s hourly energy consumption for July 2020. Upon preprocessing of the data set, total sample number for each represented variable was 464. The 80:20 splitting ratio was used to divide the data set into training and testing set respectively, making 452 samples for the training set and 112 samples for the testing set. A weights-based approach has also been used to analyze the relative impact of the model’s input parameters on the DC’s energy demand pattern. Findings The performance of the proposed model has been compared with those of neural network models trained using state of the art algorithms such as moth flame optimization, whale optimization algorithm and ant lion optimizer. From analysis, it was found that the proposed TSA outperformed the other methods in training the model based on their mean squared error, root mean squared error, mean absolute error, mean absolute percentage error and prediction accuracy. Analyzing the relative percentage contribution of the model's input parameters based on the weights of the neural network also shows that the ambient temperature of the DC has the highest impact on the building’s energy demand pattern. Research limitations/implications The proposed novel model can be applied to solving other complex engineering problems such as regression and classification. The methodology for optimizing the multi-layered perceptron neural network can also be further applied to other forms of neural networks for improved performance. Practical implications Based on the forecasted energy demand of the DC and an understanding of how the input parameters impact the building's energy demand pattern, neural networks can be deployed to optimize the cooling systems of the DC for reduced energy cost. Originality/value The use of TSA for optimizing the weights and biases of a neural network is a novel study. The application context of this study which is DCs is quite untapped in the literature, leaving many gaps for further research. The proposed prediction model can be further applied to other regression tasks and classification tasks. Another contribution of this study is the analysis of the neural network's input parameters, which provides insight into the level to which each parameter influences the DC’s energy demand profile.


2008 ◽  
pp. 2476-2493 ◽  
Author(s):  
David Encke

Researchers have known for some time that nonlinearity exists in the financial markets and that neural networks can be used to forecast market returns. Unfortunately, many of these studies fail to consider alternative forecasting techniques, or the relevance of the input variables. The following research utilizes an information-gain technique from machine learning to evaluate the predictive relationships of numerous financial and economic input variables. Neural network models for level estimation and classification are then examined for their ability to provide an effective forecast of future values. A cross-validation technique is also employed to improve the generalization ability of the models. The results show that the classification models generate higher accuracy in forecasting ability than the buy-and-hold strategy, as well as those guided by the level-estimation-based forecasts of the neural network and benchmark linear regression models.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3213 ◽  
Author(s):  
Amr Hassan ◽  
Abdel-Rahman Akl ◽  
Ibrahim Hassan ◽  
Caroline Sunderland

Predicting the results of soccer competitions and the contributions of match attributes, in particular, has gained popularity in recent years. Big data processing obtained from different sensors, cameras and analysis systems needs modern tools that can provide a deep understanding of the relationship between this huge amount of data produced by sensors and cameras, both linear and non-linear data. Using data mining tools does not appear sufficient to provide a deep understanding of the relationship between the match attributes and results and how to predict or optimize the results based upon performance variables. This study aimed to suggest a different approach to predict wins, losses and attributes’ sensitivities which enables the prediction of match results based on the most sensitive attributes that affect it as a second step. A radial basis function neural network model has successfully weighted the effectiveness of all match attributes and classified the team results into the target groups as a win or loss. The neural network model’s output demonstrated a correct percentage of win and loss of 83.3% and 72.7% respectively, with a low Root Mean Square training error of 2.9% and testing error of 0.37%. Out of 75 match attributes, 19 were identified as powerful predictors of success. The most powerful respectively were: the Total Team Medium Pass Attempted (MBA) 100%; the Distance Covered Team Average in zone 3 (15–20 km/h; Zone3_TA) 99%; the Team Average ball delivery into the attacking third of the field (TA_DAT) 80.9%; the Total Team Covered Distance without Ball Possession (Not in_Poss_TT) 76.8%; and the Average Distance Covered by Team (Game TA) 75.1%. Therefore, the novel radial based function neural network model can be employed by sports scientists to adapt training, tactics and opposition analysis to improve performance.


Author(s):  
Bo Mi Lee ◽  
Kenneth J. Loh ◽  
Francesco Lanza di Scalea

Nondestructive inspection (NDI) is an effective technique to inspect, test, or evaluate the integrity of materials, components, and structures without interrupting the serviceability of a system. Despite recent advances in NDI techniques, most of them are either limited to sensing structural response at their instrumented locations or require multiple sensors and measurements to localize damage. In this study, a new NDI system that could achieve distributed sensing using a single measurement was investigated. Here, piezoresistive carbon nanotube (CNT)-polymer thin film sensors connected in a transmission line setup were interrogated using electrical time-domain reflectometry (ETDR). In ETDR, an electromagnetic signal is sent from one end of the transmission line. When the signal encounters the sensor, it can partially reflect and be captured at the same point. The characteristics of the reflected signal depend on the sensor’s impedance, which is correlated to structural response, deformation, or damage. The advantage of this is that distributed sensing along the entire transmission line can be achieved using a single measurement point. To validate this concept, CNT-polymer thin films that were integrated with a transmission line are subjected to uniaxial tensile strains applied using a load frame. The ETDR signals were analyzed to assess the system’s sensing performance.


Author(s):  
Payam Hanafizadeh ◽  
Neda Rastkhiz Paydar ◽  
Neda Aliabadi

This article evaluates the effect of the motivation of employees on organizational performance using a neural network. Studies show that employee motivation influences organizational performance, particularly in organizations providing services. Methods based on statistical computations like regression and correlation analysis were used to measure the mutual effects of these factors. As these statistical methods necessitate the fulfillment of certain requirements like normally distributed data and because they are not able to express non-linear relations and hidden complicated patterns, a back propagation neural network has been used. The neural network was trained by using data from 300 questionnaires answered by hospital employees and 1933 patients hospitalized in a private hospital in Tehran over three successive months.


Sign in / Sign up

Export Citation Format

Share Document