scholarly journals A Robust Dirichlet Reputation and Trust Evaluation of Nodes in Mobile Ad Hoc Networks

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 571
Author(s):  
Eric Chiejina ◽  
Hannan Xiao ◽  
Bruce Christianson ◽  
Alexios Mylonas ◽  
Chidinma Chiejina

The distributed nature of mobile ad hoc networks (MANETs) presents security challenges and vulnerabilities which sometimes lead to several forms of attacks. To improve the security in MANETs, reputation and trust management systems (RTMS) have been developed to mitigate some attacks and threats arising from abnormal behaviours of nodes in networks. Generally, most reputation and trust systems in MANETs focus mainly on penalising uncooperative network nodes. It is a known fact that nodes in MANETs have limited energy resources and as such, the continuous collaboration of cooperative nodes will lead to energy exhaustion. This paper develops and evaluates a robust Dirichlet reputation and trust management system which measures and models the reputation and trust of nodes in the network, and it incorporates candour into the mode of operations of the RTMS without undermining network security. The proposed RTMS employs Dirichlet probability distribution in modelling the individual reputation of nodes and the trust of each node is computed based on the node’s actual network performance and the accuracy of the second-hand reputations it gives about other nodes. The paper also presents a novel candour two-dimensional trustworthiness evaluation technique that categorises the behaviours of nodes based on their evaluated total reputation and trust values. The evaluation and analyses of some of the simulated behaviours of nodes in the deployed MANETs show that the candour two-dimensional trustworthiness evaluation technique is an effective technique that encourages and caters to nodes that continuously contribute to the network despite the reduction in their energy levels.

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1635
Author(s):  
Neeraj Chugh ◽  
Geetam Singh Tomar ◽  
Robin Singh Bhadoria ◽  
Neetesh Saxena

To sustain the security services in a Mobile Ad Hoc Networks (MANET), applications in terms of confidentially, authentication, integrity, authorization, key management, and abnormal behavior detection/anomaly detection are significant. The implementation of a sophisticated security mechanism requires a large number of network resources that degrade network performance. In addition, routing protocols designed for MANETs should be energy efficient in order to maximize network performance. In line with this view, this work proposes a new hybrid method called the data-driven zone-based routing protocol (DD-ZRP) for resource-constrained MANETs that incorporate anomaly detection schemes for security and energy awareness using Network Simulator 3. Most of the existing schemes use constant threshold values, which leads to false positive issues in the network. DD-ZRP uses a dynamic threshold to detect anomalies in MANETs. The simulation results show an improved detection ratio and performance for DD-ZRP over existing schemes; the method is substantially better than the prevailing protocols with respect to anomaly detection for security enhancement, energy efficiency, and optimization of available resources.


2010 ◽  
Vol 7 (3) ◽  
pp. 172-185 ◽  
Author(s):  
Pedro B. Velloso ◽  
Rafael P. Laufer ◽  
Daniel de O. Cunha ◽  
Otto Carlos M.B. Duarte ◽  
Guy Pujolle

2016 ◽  
Vol 2016 ◽  
pp. 1-18
Author(s):  
Eduardo da Silva ◽  
Luiz Carlos Pessoa Albini

As a consequence of the particularities of Mobile Ad Hoc Networks (MANETs), such as dynamic topology and self-organization, the implementation of complex and flexible applications is a challenge. To enable the deployment of these applications, several middleware solutions were proposed. However, these solutions do not completely consider the security requirements of these networks. Based on the limitations of the existing solutions, this paper presents a new secure middleware, called Secure Middleware for Ad Hoc Networks (SEMAN), which provides a set of basic and secure services to MANETs aiming to facilitate the development of distributed, complex, and flexible applications. SEMAN considers the context of applications and organizes nodes into groups, also based on these contexts. The middleware includes three modules: service, processing, and security. Security module is the main part of the middleware. It has the following components: key management, trust management, and group management. All these components were developed and are described in this paper. They are supported by a cryptographic core and behave according to security rules and policies. The integration of these components provides security guarantees against attacks to the applications that usethe middleware services.


Sign in / Sign up

Export Citation Format

Share Document