scholarly journals Assessment of “Sameness” and/or Differences between Marketed Creams Containing Miconazole Nitrate Using a Discriminatory in vitro Release Testing (IVRT) Method

2020 ◽  
Vol 88 (1) ◽  
pp. 6
Author(s):  
Potiwa Purazi ◽  
Seeprarani Rath ◽  
Ashmita Ramanah ◽  
Isadore Kanfer

In vitro release testing (IVRT) provides an efficient method for the evaluation of drug release from semi-solid formulations. The aim of this research was to develop and validate a discriminatory IVRT system using vertical diffusion cells (VDCs) to assess generic topical products containing miconazole nitrate (MCZ). A comprehensive approach addressing all essential suitability criteria supporting the reliability of IVRT results was applied. These include mechanical validation of the VDCs, a performance verification test (PVT), validation of the analytical method (HPLC) used to quantify the drug release and validation of the IVRT method to confirm its precision, reproducibility, discriminatory ability, and robustness. Two marketed generic products were tested and assessed in accordance with the acceptance criteria for “sameness” in the FDA’s SUPAC-SS guidance which requires that the 90% confidence interval (CI) should fall within the limits of 75%–133.33%. One product was found to be in vitro equivalent to the reference product whereas the other was not. The results confirmed the suitability of the IVRT method to accurately measure the release of MCZ from topical cream products and, importantly, demonstrated the necessary discriminatory ability to assess “sameness”/differences of dermatological creams containing MCZ. Furthermore, the developed IVRT method was able to detect differences between formulations, which may be attributed to qualitative (Q1) and quantitative (Q2) properties and the microstructure and arrangement of matter (Q3).

2013 ◽  
Vol 49 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Karin Goebel ◽  
Mayumi Eliza Otsuka Sato ◽  
Dayse Fernanda de Souza ◽  
Fábio Seigi Murakami ◽  
Itamar Francisco Andreazza

In order for the pharmacological action of a topical dermal drug product to occur, the drug must first be released from the vehicle to be available to penetrate the skin layers and reach the site of action. Drug release is mainly dependent on the characteristics of the formulation. Currently, to register a generic or a similar drug product in Brazil performance testing of topical drug products for local action is not required. In this context, this aim of this study was to evaluate the in vitro release of commercial diclofenac diethylamine gel products available on the Brazilian pharmaceutical market, using the vertical diffusion cell method. Factors which may influence the test, such as the type of membrane used, and the effect of the formulation characteristics on the diffusion rate were evaluated. Brazilian legislation currently allows generic drug products to contain excipients other than the reference drug, which may affect the drug release from the vehicle. Only one of the four generic drug products tested could be considered equivalent to the reference Cataflam Emulgel®. The cellulose acetate and polyethersulfone membranes tested were found to be interchangeable in the in vitro release studies carried out on this product.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1313
Author(s):  
Yejin Kim ◽  
Eun Ji Park ◽  
Tae Wan Kim ◽  
Dong Hee Na

Biopolymeric microparticles have been widely used for long-term release formulations of short half-life chemicals or synthetic peptides. Characterization of the drug release from microparticles is important to ensure product quality and desired pharmacological effect. However, there is no official method for long-term release parenteral dosage forms. Much work has been done to develop methods for in vitro drug release testing, generally grouped into three major categories: sample and separate, dialysis membrane, and continuous flow (flow-through cell) methods. In vitro drug release testing also plays an important role in providing insight into the in vivo performance of a product. In vitro release test with in vivo relevance can reduce the cost of conducting in vivo studies and accelerate drug product development. Therefore, investigation of the in vitro–in vivo correlation (IVIVC) is increasingly becoming an essential part of particulate formulation development. This review summarizes the principles of the in vitro release testing methods of biopolymeric particulate system with the recent research articles and discusses their characteristics including IVIVC, accelerated release testing methods, and stability of encapsulated drugs.


2017 ◽  
Vol 24 (3) ◽  
pp. 52-60 ◽  
Author(s):  
Isadore Kanfer ◽  
Seeprarani Rath ◽  
Potiwa Purazi ◽  
Nyengeterai Amanda Mudyahoto

Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


Sign in / Sign up

Export Citation Format

Share Document