scholarly journals A Sparse Algorithm for Computing the DFT Using Its Real Eigenvectors

Signals ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 688-705
Author(s):  
Rajesh Thomas ◽  
Victor DeBrunner ◽  
Linda S. DeBrunner

Direct computation of the discrete Fourier transform (DFT) and its FFT computational algorithms requires multiplication (and addition) of complex numbers. Complex number multiplication requires four real-valued multiplications and two real-valued additions, or three real-valued multiplications and five real-valued additions, as well as the requisite added memory for temporary storage. In this paper, we present a method for computing a DFT via a natively real-valued algorithm that is computationally equivalent to a N=2k-length DFT (where k is a positive integer), and is substantially more efficient for any other length, N. Our method uses the eigenstructure of the DFT, and the fact that sparse, real-valued, eigenvectors can be found and used to advantage. Computation using our method uses only vector dot products and vector-scalar products.

Akustika ◽  
2020 ◽  
Vol 36 (36) ◽  
pp. 25-32
Author(s):  
Jaroslav Smutný ◽  
Dušan Janoštík ◽  
Viktor Nohál

The goal of this study is to familiarize a wider professional public with not fully known procedures suitable for processing measured data in the frequency area. Described is the use of the so-called Multi-taper method to analyze the acoustic response. This transformation belongs to a group of nonparametric methods outgoing from discrete Fourier transform, and this study includes its mathematical analysis and description. In addition, the use of respective method in a specific application area and recommendations for practice are described.


Sign in / Sign up

Export Citation Format

Share Document