scholarly journals Tracking Poisson Parameter for Non-Stationary Discontinuous Time Series with Taylor’s Abnormal Fluctuation Scaling

Stats ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Gen Sakoda ◽  
Hideki Takayasu ◽  
Misako Takayasu

We propose a parameter estimation method for non-stationary Poisson time series with the abnormal fluctuation scaling, known as Taylor’s law. By introducing the effect of Taylor’s fluctuation scaling into the State Space Model with the Particle Filter, the underlying Poisson parameter’s time evolution is estimated correctly from given non-stationary time series data with abnormally large fluctuations. We also developed a discontinuity detection method which enables tracking the Poisson parameter even for time series including sudden discontinuous jumps. As an example of application of this new general method, we analyzed Point-of-Sales data in convenience stores to estimate change of probability of purchase of commodities under fluctuating number of potential customers. The effectiveness of our method for Poisson time series with non-stationarity, large discontinuities and Taylor’s fluctuation scaling is verified by artificial and actual time series.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4112 ◽  
Author(s):  
Se-Min Lim ◽  
Hyeong-Cheol Oh ◽  
Jaein Kim ◽  
Juwon Lee ◽  
Jooyoung Park

Recently, wearable devices have become a prominent health care application domain by incorporating a growing number of sensors and adopting smart machine learning technologies. One closely related topic is the strategy of combining the wearable device technology with skill assessment, which can be used in wearable device apps for coaching and/or personal training. Particularly pertinent to skill assessment based on high-dimensional time series data from wearable sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising, and extracting some low-dimensional representations useful for coaching. In this paper, we present a deep learning-based coaching assistant method, which can provide useful information in supporting table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep state space model and probabilistic inference. More precisely, we use the expressive power of LSTM when handling high-dimensional time series data, and state space model and probabilistic inference to extract low-dimensional latent representations useful for coaching. Experimental results show that our method can yield promising results for characterizing high-dimensional time series patterns and for providing useful information when working with wearable IMU (Inertial measurement unit) sensors for table tennis coaching.


2019 ◽  
pp. 019251211988473
Author(s):  
Seung-Whan Choi ◽  
Henry Noll

In this study, we argue that ethnic inclusiveness is an important democratic norm that fosters interstate peace. When two states are socialized into the notion of ethnic tolerance, they acquire the ability to reach cooperative arrangements in time of crisis. Based on cross-national time-series data analysis covering the period 1950–2001, we illustrate how two states that are inclusive of their politically relevant ethnic groups are less likely to experience interstate disputes than states that remain exclusive. This finding was robust, regardless of sample size, intensity of the dispute, model specification, or estimation method. Therefore, we believe in the existence of ethnic peace: ethnic inclusiveness represents an unambiguous force for democratic peace.


2011 ◽  
Vol 19 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Jong Hee Park

In this paper, I introduce changepoint models for binary and ordered time series data based on Chib's hidden Markov model. The extension of the changepoint model to a binary probit model is straightforward in a Bayesian setting. However, detecting parameter breaks from ordered regression models is difficult because ordered time series data often have clustering along the break points. To address this issue, I propose an estimation method that uses the linear regression likelihood function for the sampling of hidden states of the ordinal probit changepoint model. The marginal likelihood method is used to detect the number of hidden regimes. I evaluate the performance of the introduced methods using simulated data and apply the ordinal probit changepoint model to the study of Eichengreen, Watson, and Grossman on violations of the “rules of the game” of the gold standard by the Bank of England during the interwar period.


2016 ◽  
Vol 55 (2) ◽  
pp. 47-58
Author(s):  
Nooreen Mujahid ◽  
Azeema Begum ◽  
Muhammad Noman

This paper explores the relationship between export growth and economic growth in the case of Pakistan by employing time series data for the period 1971- 2013. This study has incorporated variables like GDP (Gross Domestic Product) exports, imports and Foreign Direct Investment (FDI). We have applied ARDL to co-integration and Error Correction Model (ECM). The study provides the evidence of stationary time series variables, the existence of the long - run relationship between them, and the result of ECM revealed short rum equilibrium adjustment. Pakistan has many options for enhancing the export of the country. There is a dire need to minimize trade barriers and restrictions such as import and export quotas. Government of Pakistan had introduced Structural Reforms for liberalization, privatization and de-regulation which will actually shifted the trend of trade at a significant level in the end of 1980s. Low levels of interest rate can help exportable industries in which investments are needed to promote and enhance the exports. Stable exchange rate is the first and the best policy option for increasing the export and managing the imports. There is a cause and effect relationship between exchange rate and FDI. Pakistan has to immediately find the policies and processes that support logistics and facilitates trade.


Author(s):  
Heni Kusdarwati ◽  
Samingun Handoyo

This paper proposes and examines the performance of a hybrid model called the wavelet radial bases function neural networks (WRBFNN). The model will be compared its performance with the wavelet feed forward neural networks (WFFN model by developing a prediction or forecasting system that considers two types of input formats: input9 and input17, and also considers 4 types of non-stationary time series data. The MODWT transform is used to generate wavelet and smooth coefficients, in which several elements of both coefficients are chosen in a particular way to serve as inputs to the NN model in both RBFNN and FFNN models. The performance of both WRBFNN and WFFNN models is evaluated by using MAPE and MSE value indicators, while the computation process of the two models is compared using two indicators, many epoch, and length of training. In stationary benchmark data, all models have a performance with very high accuracy. The WRBFNN9 model is the most superior model in nonstationary data containing linear trend elements, while the WFFNN17 model performs best on non-stationary data with the non-linear trend and seasonal elements. In terms of speed in computing, the WRBFNN model is superior with a much smaller number of epochs and much shorter training time.


2021 ◽  
Vol 27 (1) ◽  
pp. 55-60
Author(s):  
Sampson Twumasi-Ankrah ◽  
Simon Kojo Appiah ◽  
Doris Arthur ◽  
Wilhemina Adoma Pels ◽  
Jonathan Kwaku Afriyie ◽  
...  

This study examined the performance of six outlier detection techniques using a non-stationary time series dataset. Two key issues were of interest. Scenario one was the method that could correctly detect the number of outliers introduced into the dataset whiles scenario two was to find the technique that would over detect the number of outliers introduced into the dataset, when a dataset contains only extreme maxima values, extreme minima values or both. Air passenger dataset was used with different outliers or extreme values ranging from 1 to 10 and 40. The six outlier detection techniques used in this study were Mahalanobis distance, depth-based, robust kernel-based outlier factor (RKOF), generalized dispersion, Kth nearest neighbors distance (KNND), and principal component (PC) methods. When detecting extreme maxima, the Mahalanobis and the principal component methods performed better in correctly detecting outliers in the dataset. Also, the Mahalanobis method could identify more outliers than the others, making it the "best" method for the extreme minima category. The kth nearest neighbor distance method was the "best" method for not over-detecting the number of outliers for extreme minima. However, the Mahalanobis distance and the principal component methods were the "best" performed methods for not over-detecting the number of outliers for the extreme maxima category. Therefore, the Mahalanobis outlier detection technique is recommended for detecting outlier in nonstationary time series data.


Sign in / Sign up

Export Citation Format

Share Document