scholarly journals Photovoltaic Power Forecasting Based on EEMD and a Variable-Weight Combination Forecasting Model

2018 ◽  
Vol 10 (8) ◽  
pp. 2627 ◽  
Author(s):  
Hui Wang ◽  
Jianbo Sun ◽  
Weijun Wang

It is widely considered that solar energy will be one of the most competitive energy sources in the future, and solar energy currently accounts for high percentages of power generation in developed countries. However, its power generation capacity is significantly affected by several factors; therefore, accurate prediction of solar power generation is necessary. This paper proposes a photovoltaic (PV) power generation forecasting method based on ensemble empirical mode decomposition (EEMD) and variable-weight combination forecasting. First, EEMD is applied to decompose PV power data into components that are then combined into three groups: low-frequency, intermediate-frequency, and high-frequency. These three groups of sequences are individually predicted by the variable-weight combination forecasting model and added to obtain the final forecasting result. In addition, the design of the weights for combination forecasting was studied during the forecasting process. The comparison in the case study indicates that in PV power generation forecasting, the prediction results obtained by the individual forecasting and summing of the sequences after the EEMD are better than those from direct prediction. In addition, when the single prediction model is converted to a variable-weight combination forecasting model, the prediction accuracy is further improved by using the optimal weights.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qi Wang ◽  
Shunxiang Ji ◽  
Minqiang Hu ◽  
Wei Li ◽  
Fusuo Liu ◽  
...  

The forecast for photovoltaic (PV) power generation is of great significance for the operation and control of power system. In this paper, a short-term combination forecasting model for PV power based on similar day and cross entropy theory is proposed. The main influencing factors of PV power are analyzed. From the perspective of entropy theory, considering distance entropy and grey relation entropy, a comprehensive index is proposed to select similar days. Then, the least square support vector machine (LSSVM), autoregressive and moving average (ARMA), and back propagation (BP) neural network are used to forecast PV power, respectively. The weights of three single forecasting methods are dynamically set by the cross entropy algorithm and the short-term combination forecasting model for PV power is established. The results show that this method can effectively improve the prediction accuracy of PV power and is of great significance to real-time economical dispatch.


2012 ◽  
Vol 433-440 ◽  
pp. 6168-6174
Author(s):  
Li Mu ◽  
Jia Chuan Shi ◽  
Xian Quan Li

Impact loads in large iron and steel enterprise bring the power system reactive power impact, which makes the fluctuation of the system voltage, power factor and other parameters are out of the limitation of the national standard. Substation bus reactive load forecasting in large iron and steel enterprise can be introduced to determine reactive power optimization strategy and the switching of capacitors. In this paper, a combination forecasting model of quadratic self-adaptive exponential smoothing (QSES) model and converse exponential (CE) model has been proposed for substation bus reactive load forecasting. The numerical results in Jinan iron and steel Group show the application of this model is encouraging. Introduction


Sign in / Sign up

Export Citation Format

Share Document