scholarly journals Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada

2018 ◽  
Vol 10 (8) ◽  
pp. 2715 ◽  
Author(s):  
Alejandro Padilla-Rivera ◽  
Ben Amor ◽  
Pierre Blanchet

The design and study of low carbon buildings is a major concern in a modern economy due to high carbon emissions produced by buildings and its effects on climate change. Studies have investigated (CFP) Carbon Footprint of buildings, but there remains a need for a strong analysis that measure and quantify the overall degree of GHG emissions reductions and its relationship with the effect on climate change mitigation. This study evaluates the potential of reducing greenhouse gas (GHG) emissions from the building sector by evaluating the (CFP) of four hotpots approaches defined in line with commonly carbon reduction strategies, also known as mitigation strategies. CFP framework is applied to compare the (CC) climate change impact of mitigation strategies. A multi-story timber residential construction in Quebec City (Canada) was chosen as a baseline scenario. This building has been designed with the idea of being a reference of sustainable development application in the building sector. In this scenario, the production of materials and construction (assembly, waste management and transportation) were evaluated. A CFP that covers eight actions divided in four low carbon strategies, including: low carbon materials, material minimization, reuse and recycle materials and adoption of local sources and use of biofuels were evaluated. The results of this study shows that the used of prefabricated technique in buildings is an alternative to reduce the CFP of buildings in the context of Quebec. The CC decreases per m2 floor area in baseline scenario is up to 25% than current buildings. If the benefits of low carbon strategies are included, the timber structures can generate 38% lower CC than the original baseline scenario. The investigation recommends that CO2eq emissions reduction in the design and implementation of residential constructions as climate change mitigation is perfectly feasible by following different working strategies. It is concluded that if the four strategies were implemented in current buildings they would have environmental benefits by reducing its CFP. The reuse wood wastes into production of particleboard has the greatest environmental benefit due to temporary carbon storage.

2021 ◽  
Vol 97 (02) ◽  
pp. 179-190
Author(s):  
Georgina K. Magnus ◽  
Elizabeth Celanowicz ◽  
Mihai Voicu ◽  
Mark Hafer ◽  
Juha M. Metsaranta ◽  
...  

The United Nations Framework Convention on Climate Change (UNFCCC) requires its signatories, including Canada, to estimate and report their annual greenhouse gas (GHG) emissions and removals. Forests are an important natural resource as they slow the accumulation of atmospheric carbon through the process of carbon sequestration. Due to the role of forests as carbon sinks, governments consider afforestation projects as feasible climate change mitigation strategies. This article outlines a spatially-explicit approach to validating afforestation data in Ontario, Canada. Validation is a user-supervised process that uses satellite imagery, remote sensing tools, and other auxiliary data to confirm the presence of seedlings planted through Forests Ontario’s 50 Million Tree program. Of the 12 466 hectares assessed, 83% is identified as afforested, 6% is not afforested and 10% is not determined. The area classified as successful afforestation is used as input for the Generic Carbon Budget Model (GCBM), to simulate afforestation effects on carbon stocks. Our findings show the afforestation activities will create a small carbon sink by 2060. From this project, it is evident that spatial validation of afforestation data is feasible, although the collection of additional standardized auxiliary data is recommended for future afforestation projects, if carbon benefits are to be reported.


2021 ◽  
Vol 13 (21) ◽  
pp. 12235
Author(s):  
Peter Hemmings ◽  
Michael Mulheron ◽  
Richard J. Murphy ◽  
Matt Prescott

COVID-19 has had wide-ranging impacts on organisations with the potential to disrupt efforts to decarbonise their operations. To understand how COVID-19 has affected the climate change mitigation strategies of Airport Operators (AOs), questionnaires and semi-structured interviews with Sustainability Managers were undertaken in late 2020 amidst a period of disruption. While all reported that COVID-19 impacted delivery of interventions and projects to mitigate climate change, the majority stated that it would not impact their long-term climate goals, such as Net Zero by 2050. The most popular climate change mitigation interventions AOs intend to deploy between now and 2030 are on-site renewables and Electric Vehicles and related infrastructure. Engineered carbon removal interventions were considered highly unlikely to be deployed in this timeframe, with potential implications for Net Zero decarbonisation pathways. Despite the severe impacts of COVID-19 on the sector, results indicate that AOs remain committed to decarbonisation, with climate change action remaining the key priority for airports. Given ongoing financial and resource constraints, AOs will need to explore new business models and partnerships and nurture collaborative approaches with other aviation stakeholders to not only maintain progress toward Net Zero but “build back better”. Government support will also be needed to stimulate the development of a sustainable, resilient, low-carbon aviation system.


Climate ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 90 ◽  
Author(s):  
Elena Sesana ◽  
Chiara Bertolin ◽  
Alexandre Gagnon ◽  
John Hughes

Climate change mitigation targets have put pressure to reduce the carbon footprint of cultural heritage buildings. Commonly adopted measures to decrease the greenhouse gas (GHG) emissions of historical buildings are targeted at improving their energy efficiency through insulating the building envelope, and upgrading their heating, cooling and lighting systems. However, there are complex issues that arise when mitigating climate change in the cultural built heritage sector. For instance, preserving the authenticity of heritage buildings, maintaining their traditional passive behaviours, and choosing adaptive solutions compatible with the characteristics of heritage materials to avoid an acceleration of decay processes. It is thus important to understand what the enablers, or the barriers, are to reduce the carbon footprint of cultural heritage buildings to meet climate change mitigation targets. This paper investigates how climate change mitigation is considered in the management and preservation of the built heritage through semi-structured interviews with cultural heritage experts from the UK, Italy and Norway. Best-practice approaches for the refurbishment of historical buildings with the aim of decreasing their energy consumption are presented, as perceived by the interviewees, as well as the identification of the enablers and barriers in mitigating climate change in the cultural built heritage sector. The findings emphasise that adapting the cultural built heritage to reduce GHG emissions is challenging, but possible if strong and concerted action involving research and government can be undertaken to overcome the barriers identified in this paper.


2019 ◽  
Vol 116 (23) ◽  
pp. 11187-11194 ◽  
Author(s):  
Arne Kätelhön ◽  
Raoul Meys ◽  
Sarah Deutz ◽  
Sangwon Suh ◽  
André Bardow

Chemical production is set to become the single largest driver of global oil consumption by 2030. To reduce oil consumption and resulting greenhouse gas (GHG) emissions, carbon dioxide can be captured from stacks or air and utilized as alternative carbon source for chemicals. Here, we show that carbon capture and utilization (CCU) has the technical potential to decouple chemical production from fossil resources, reducing annual GHG emissions by up to 3.5 Gt CO2-eq in 2030. Exploiting this potential, however, requires more than 18.1 PWh of low-carbon electricity, corresponding to 55% of the projected global electricity production in 2030. Most large-scale CCU technologies are found to be less efficient in reducing GHG emissions per unit low-carbon electricity when benchmarked to power-to-X efficiencies reported for other large-scale applications including electro-mobility (e-mobility) and heat pumps. Once and where these other demands are satisfied, CCU in the chemical industry could efficiently contribute to climate change mitigation.


La Granja ◽  
2020 ◽  
Vol 32 (2) ◽  
pp. 30-41
Author(s):  
Leticia Citlaly López-Teloxa ◽  
Alejandro Ismael Monterroso-Rivas

Soil, in addition to storing is a source of CO2 to the atmosphere emitted by soil respiration, mainly due to land use change. The objective of the research was to evaluate soil respiration in different uses and quantify its CO2 emissions at two different times of the year, as well as estimate the storage of this to make a balance to establish strategies that allows with the climate change mitigation. Using a closed dynamic chamber placed on the soil and integrated with an infrared gas analyzer measured the CO2 emission every 30 min, as well as temperature and moisture of the soil with sensors. Three land uses (agroforestry, forestry and agricultural) and two seasons of the year (summer and winter) were analyzed for 24 continuous hours at each site. Positive correlation between ambient temperature and soil respiration was found to exist. The agricultural system stores low carbon content in the soil (50.31 t C ha-1) and emits 9.28 t of C ha-1 in the highest temperature season, in contrast to a natural system that emits 3.98 t of C ha-1 and stores 198.90 t of C ha-1. The balance sheet reflects the need to know CO2 emissions to the atmosphere from soils and not just warehouses. Having scientific support from the ground to the atmosphere is an important step in decision-making that will contribute to climate change mitigation.


2021 ◽  
pp. 1-12
Author(s):  
Georgina K. Magnus ◽  
Elizabeth Celanowicz ◽  
Mihai Voicu ◽  
Mark Hafer ◽  
Juha M. Metsaranta ◽  
...  

The United Nations Framework Convention on Climate Change (UNFCCC) requires its signatories, including Canada, to estimate and report their annual greenhouse gas (GHG) emissions and removals. Forests are an important natural resource as they slow the accumulation of atmospheric carbon through the process of carbon sequestration. Due to the role of forests as carbon sinks, governments consider afforestation projects as feasible climate change mitigation strategies. This article outlines a spatially-explicit approach to validating afforestation data in Ontario, Canada. Validation is a user-supervised process that uses satellite imagery, remote sensing tools, and other auxiliary data to confirm the presence of seedlings planted through Forests Ontario’s 50 Million Tree program. Of the 12 466 hectares assessed, 83% is identified as afforested, 6% is not afforested and 10% is not determined. The area classified as successful afforestation is used as input for the Generic Carbon Budget Model (GCBM), to simulate afforestation effects on carbon stocks. Our findings show the afforestation activities will create a small carbon sink by 2060. From this project, it is evident that spatial validation of afforestation data is feasible, although the collection of additional standardized auxiliary data is recommended for future afforestation projects, if carbon benefits are to be reported.


2021 ◽  
Vol 13 (6) ◽  
pp. 3170
Author(s):  
Avri Eitan

Evidence shows that global climate change is increasing over time, and requires the adoption of a variety of coping methods. As an alternative for conventional electricity systems, renewable energies are considered to be an important policy tool for reducing greenhouse gas emissions, and therefore, they play an important role in climate change mitigation strategies. Renewable energies, however, may also play a crucial role in climate change adaptation strategies because they can reduce the vulnerability of energy systems to extreme events. The paper examines whether policy-makers in Israel tend to focus on mitigation strategies or on adaptation strategies in renewable energy policy discourse. The results indicate that despite Israel’s minor impact on global greenhouse gas emissions, policy-makers focus more on promoting renewable energies as a climate change mitigation strategy rather than an adaptation strategy. These findings shed light on the important role of international influence—which tends to emphasize mitigation over adaptation—in motivating the domestic policy discourse on renewable energy as a coping method with climate change.


Sign in / Sign up

Export Citation Format

Share Document