carbon budget model
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1235
Author(s):  
Jason Heffner ◽  
James Steenberg ◽  
Brigitte Leblon

In response to the global climate crisis, the Nova Scotia Department of Lands and Forestry is using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) and associated methodologies to assess the carbon dynamics of the provincial forestry sector. The CBM-CFS3 bases simulations on a range of studies and national forest inventory plots to predict carbon dynamics using merchantable volume yield curves. Nova Scotia has also maintained thousands of permanent forest sample plots (PSPs) for decades, offering the opportunity to develop empirical, province-specific carbon models. This study used PSP tree measurements and allometric equations to compute plot-level forest carbon models from the PSP dataset and compared their output to that of the CBM-CFS3 model. The PSP-based models were stratified into five forest types and predict the carbon for seven carbon pools as a function of the plot age. Predictions with the PSP- and CBM-CFS3 models were compared to observed PSP data at the plot level and compared against each other at the stand and landscape level. At the plot level, the PSP-derived models predicted carbon closer to the observed data than the CBM-CFS3 model, the extent of over- or under-estimation depending on the carbon pool and forest type. At the stand scale, the CBM-CFS3 model predicted forest carbon to within 3.1–17.6% of the PSP method on average. Differences in predictions between the CBM-CFS3 and PSP models decreased to within 2.4% of the PSP-based models at the landscape level. Thus, the implications of using one method over the other decrease as the prediction scale increases from stand to landscape level, and the implications fluctuate as a function of the forest type and age.


2021 ◽  
Vol 97 (02) ◽  
pp. 179-190
Author(s):  
Georgina K. Magnus ◽  
Elizabeth Celanowicz ◽  
Mihai Voicu ◽  
Mark Hafer ◽  
Juha M. Metsaranta ◽  
...  

The United Nations Framework Convention on Climate Change (UNFCCC) requires its signatories, including Canada, to estimate and report their annual greenhouse gas (GHG) emissions and removals. Forests are an important natural resource as they slow the accumulation of atmospheric carbon through the process of carbon sequestration. Due to the role of forests as carbon sinks, governments consider afforestation projects as feasible climate change mitigation strategies. This article outlines a spatially-explicit approach to validating afforestation data in Ontario, Canada. Validation is a user-supervised process that uses satellite imagery, remote sensing tools, and other auxiliary data to confirm the presence of seedlings planted through Forests Ontario’s 50 Million Tree program. Of the 12 466 hectares assessed, 83% is identified as afforested, 6% is not afforested and 10% is not determined. The area classified as successful afforestation is used as input for the Generic Carbon Budget Model (GCBM), to simulate afforestation effects on carbon stocks. Our findings show the afforestation activities will create a small carbon sink by 2060. From this project, it is evident that spatial validation of afforestation data is feasible, although the collection of additional standardized auxiliary data is recommended for future afforestation projects, if carbon benefits are to be reported.


2021 ◽  
pp. 1-12
Author(s):  
Georgina K. Magnus ◽  
Elizabeth Celanowicz ◽  
Mihai Voicu ◽  
Mark Hafer ◽  
Juha M. Metsaranta ◽  
...  

The United Nations Framework Convention on Climate Change (UNFCCC) requires its signatories, including Canada, to estimate and report their annual greenhouse gas (GHG) emissions and removals. Forests are an important natural resource as they slow the accumulation of atmospheric carbon through the process of carbon sequestration. Due to the role of forests as carbon sinks, governments consider afforestation projects as feasible climate change mitigation strategies. This article outlines a spatially-explicit approach to validating afforestation data in Ontario, Canada. Validation is a user-supervised process that uses satellite imagery, remote sensing tools, and other auxiliary data to confirm the presence of seedlings planted through Forests Ontario’s 50 Million Tree program. Of the 12 466 hectares assessed, 83% is identified as afforested, 6% is not afforested and 10% is not determined. The area classified as successful afforestation is used as input for the Generic Carbon Budget Model (GCBM), to simulate afforestation effects on carbon stocks. Our findings show the afforestation activities will create a small carbon sink by 2060. From this project, it is evident that spatial validation of afforestation data is feasible, although the collection of additional standardized auxiliary data is recommended for future afforestation projects, if carbon benefits are to be reported.


2021 ◽  
Author(s):  
Eunji Byun ◽  
Fereidoun Rezanezhad ◽  
Linden Fairbairn ◽  
Nathan Basiliko ◽  
Jonathan Price ◽  
...  

<p>Canada has extensive peat deposits in northern high latitude wetlands and permafrost ecosystems. Peat accumulation represents a natural long-term carbon sink attributed to the cumulative excess of growing season net ecosystem production over non-growing season net mineralization. However, near-surface peat deposits are vulnerable to climate change and permafrost landscape transition. One specific concern is a potential rapid increase in the non-growing season carbon loss through enhanced organic matter mineralization under a warming climate. Our experimental study explores the response of peat CO<sub>2</sub> exchanges to (1) temperature, using the conventional <em>Q<sub>10</sub></em> parameter, and (2) moisture content. The observed responses are expected to reflect, at least in part, differential soil microbial adaptations to varying wetland conditions, across two northern ecoclimatic zones. Laboratory incubations were carried out with shallow peat samples from different depths collected at seven Canadian wetland sites and adjusted to five moisture levels. For each subsample (varying by site, depth and moisture content), CO<sub>2</sub> fluxes were measured at 12 sequential temperature settings from -10 to 35˚C. For each subsample, the data were fitted to an exponential equation to derive a <em>Q<sub>10</sub></em> value. In general, boreal peat samples were more temperature sensitive than temperate peat. The optimum moisture level for CO<sub>2</sub> release was determined for all the subsamples and related to variations in wetland vegetation and landform types. As a general trend, increasing water saturation reduced the CO<sub>2</sub> release rate from a given subsample. We further tested a flexible curve-fitting equation, as recently proposed on a theoretical basis, to recompile the data by ecoclimatic peat type and to account for the non-growing season dynamics. These findings will contribute to Canada’s national carbon budget model by guiding the development and calibration of the peatland module.</p>


2021 ◽  
Author(s):  
Bostjan Mali ◽  
Jernej Jevsenak ◽  
Matija Klopcic

<p>With the advent of global warming, forests are becoming an increasingly important carbon sink that can mitigate the negative effects of climate change. An understanding of the carbon dynamics of forests is, therefore, crucial to implement appropriate forest management strategies and to meet the expectations of the Paris Agreement with respect to international reporting schemes. One of the most frequently used models for simulating the dynamics of carbon stocks in forests is the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). We applied this model in our study to evaluate the effects of harvesting on the carbon sink dynamics in Slovenian forests. Five harvesting scenarios were defined: (1) business as usual (BAU), (2) harvesting in line with current forest management plans (PLAN), (3) more frequent natural hazards (HAZ), (4) high harvest (HH) and (5) low harvest (LH). The simulated forest carbon dynamics revealed important differences between the harvesting scenarios. Relative to the base year of 2014, by 2050 the carbon stock in above-ground biomass is projected to increase by 28.4% (LH), 19% (BAU), 10% (PLAN), 6.5% (HAZ) and 1.2% (HH). Slovenian forests can be expected to be a carbon sink until harvesting exceeds approximately 9 million m<sup>3</sup> annually, which is close to the calculated total annual volume increase. Our results are also important in terms of Forest Reference Levels (FRL), which will take place in European Union (EU) member states in the period 2021-2025. For Slovenia, the FRL was set to –3270.2 Gg CO<sub>2</sub> eq/year, meaning that the total timber harvested should not exceed 6 million m<sup>3</sup> annually.</p>


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1090
Author(s):  
Jernej Jevšenak ◽  
Matija Klopčič ◽  
Boštjan Mali

With the advent of global warming, forests are becoming an increasingly important carbon sink that can mitigate the negative effects of climate change. An understanding of the carbon dynamics of forests is, therefore, crucial to implement appropriate forest management strategies and to meet the expectations of the Paris Agreement with respect to international reporting schemes. One of the most frequently used models for simulating the dynamics of carbon stocks in forests is the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). We applied this model in our study to evaluate the effects of harvesting on the carbon sink dynamics in Slovenian forests. Five harvesting scenarios were defined: (1) business as usual (BAU), (2) harvesting in line with current forest management plans (PLAN), (3) more frequent natural hazards (HAZ), (4) high harvest (HH) and (5) low harvest (LH). The simulated forest carbon dynamics revealed important differences between the harvesting scenarios. Relative to the base year of 2014, by 2050 the carbon stock in above-ground biomass is projected to increase by 28.4% (LH), 19% (BAU), 10% (PLAN), 6.5% (HAZ) and 1.2% (HH). Slovenian forests can be expected to be a carbon sink until harvesting exceeds approximately 9 million m3 annually, which is close to the calculated total annual volume increase. Our results are also important in terms of Forest Reference Levels (FRL), which will take place in European Union (EU) member states in the period 2021–2025. For Slovenia, the FRL was set to −3270.2 Gg CO2 eq/year, meaning that the total timber harvested should not exceed 6 million m3 annually.


2020 ◽  
Vol 96 (01) ◽  
pp. 9-19 ◽  
Author(s):  
Yingbing Chen ◽  
John A. Kershaw ◽  
Yung-Han Hsu ◽  
Ting-Ru Yang

Light Detection and Ranging (LiDAR) scanning has been increasingly applied in forest ecosystem surveys. Data from LiDAR describe forest structure and provide attribute information for forest inventory. These attributes can potentially aid in the estimation of biomass and carbon by providing sampling covariates. Therefore, this study explored the accuracy of estimating carbon storage by calibrating LiDAR attributes using list sampling with a ratio estimator. Standing tree carbon and down woody debris carbon were estimated across 10 broad forest types. LiDAR-derived gross total volume was used as a listing factor and big BAF samples to collect field data. Gross total volumes were “corrected” using a ratio estimator. The results show that standing tree carbon was 58.5 Mg C × ha-1 (± 2.9% SE), and dead woody debris carbon 1.8 Mg C × ha-1 (± 7.2% SE). With the exception of one forest type, these estimates were comparable to those derived from the carbon budget model of the Canadian forest sector (CBM-CFS3).


2017 ◽  
Vol 47 (8) ◽  
pp. 1082-1094 ◽  
Author(s):  
J.M. Metsaranta ◽  
C.H. Shaw ◽  
W.A. Kurz ◽  
C. Boisvenue ◽  
S. Morken

Canada’s National Forest Carbon Monitoring Accounting and Reporting System (NFCMARS) quantifies the carbon (C) dynamics and greenhouse gas (GHG) emissions and removals of Canada’s managed forest to fulfill reporting obligations under international climate conventions. Countries are also requested to assess the uncertainty associated with these estimates, which we report here. We used Monte Carlo simulation to quantify uncertainty of carbon stock and flux estimates from the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), the core ecosystem model of the NFCMARS. We evaluated the impacts of model algorithms, parameters, and the input data used to describe forest characteristics and disturbance rates. Under our assumptions, 95% confidence interval widths averaged 16.2 Pg C (+8.3 and –7.9 Pg C, or ±15%) for total ecosystem C stock and 32.2 Tg C·year−1 (+16.6 and –15.6 Tg C·year−1) for net biome production relative to an overall simulation median of –0.8 Tg C·year−1 from 1990 to 2014. The largest sources of uncertainty were related to factors determining biomass increment and the parameters used to model soil and dead organic matter C dynamics. Opportunities to reduce uncertainty and associated research challenges were identified.


Sign in / Sign up

Export Citation Format

Share Document