scholarly journals A System Dynamics Model to Evaluate Effects of Retailer-Led Recycling Based on Dual Chains Competition: A Case of e-Waste in China

2018 ◽  
Vol 10 (10) ◽  
pp. 3391 ◽  
Author(s):  
Renzheng Xue ◽  
Fengbin Zhang ◽  
Feng Tian

China, as the largest electronic waste producer in the world, is facing a critical challenge to manage its negative impacts on the environment. Hence, e-waste management is crucial for sustainable Chinese economic development. In this paper, a system dynamics model is adopted to identify the effects of retailer-led recycling based on closed-loop dual chains competition. The influence of contracts made by manufacturers on different retail modes is also discussed. From the aspects of total revenue (TR), market share (MS) and market competitiveness (MC), this paper analyzes the impact of e-waste recycling coefficient (ERC) on supply chain and analyzes the equilibrium solution of total supply chain return. The research results show that the contract incentive mechanism can improve the retailer’s recycling enthusiasm, and the effect on the retail mode of executive shop is more obvious. When the ERC is adjusted to 44.3%, the TR of supply chain is optimal, and the MS and MC occupy an obvious advantage.

2018 ◽  
Vol 7 (2) ◽  
pp. 55-80 ◽  
Author(s):  
Mohsen Shafiei Nikabadi ◽  
Amin Hajihoseinali

This article describes how technology growth and the lifecycle of devices and also other tendencies for buying new devices all cause a huge mass of electronic waste. Due to materials used in production which are dangerous or valuable metals, the environmental aspects and natural resources make electronic waste management and electronic waste recycling a pressing subject. This article studies electronic waste recycling and its importance in research of closed loop supply chain management and the impact of electronic waste recycling. Using structural equation modelling to study the factors, data was collected from 120 expert questionnaires and analyzed by SPSS and SmartPLS. Causal relationships among the studied factors and efficacy coefficients of each factor were identified by the fuzzy DEMATEL technique. Finally, the dynamic model was plotted by VENSIM.


2017 ◽  
Vol 35 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Shidi Miao ◽  
Tengfei Wang ◽  
Deyun Chen

With the rapid development of the electronic information industry in recent years, electronic products are being updated faster and faster, and e-waste recycling has become a common problem around the world. Firstly, this article contrasts recycling at home and abroad using the predicament of Midea Corp. Based on a closed-loop supply chain with the system dynamics method, a model is constructed and simulated. In this model, the collection point coverage rate is introduced to adjust the e-waste recycling rate dynamically. Aiming at a recycling mode dominated by the third party of the closed-loop supply chain, the article mainly discusses the impact on the sales rate and market share of the recycling model by third-party enterprises and compares the total revenue of all supply chains. Simulation results show that the model is more effective and optimal than the traditional recycling model.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao-qing Zhang ◽  
Xi-gang Yuan

With the technological developments and rapid changes in demand pattern, diverse varieties of electronic products are entering into the market with reduced lifecycle which leads to the environmental problems. The awareness of electronic products take-back and recovery has been increasing in electronic products supply chains. In this paper, we build a system dynamics model for electronic products closed-loop supply chain distribution network with the old-for-new policy and three electronic products recovery ways, namely, electronic products remanufacturing, electronic component reuse and remanufacturing, and electronic raw material recovery. In the simulation study, we investigate the significance of various factors including the old-for-new policy, collection and remanufacturing, their interactions and the type of their impact on bullwhip, and profitability through sensitivity analysis. Our results instruct that the old-for-new policy and three electronic products recovery ways can reduce the bullwhip effect in the retailers and the distributors and increases the profitability in the closed-loop supply chain distribution network.


2020 ◽  
Vol 55 (4) ◽  
pp. 511-534
Author(s):  
Deepankar Sinha ◽  
Virupaxi Bagodi ◽  
Debasri Dey

The COVID pandemic seems to have raised the question, ‘whether existing supply chain (SC) disruption philosophies and strategies continue to remain valid?’. This article assesses the differences in the business scenarios pre-and post-COVID. The authors capture the mathematical and operational relationships amongst the relevant factors and propose a System Dynamics (SD) model to carry out the simulations. The approach considers the impact of the force majeure condition, that is, COVID period on individuals’ income, prices and demand of goods, cost of input and supply of finished goods. The results show that earnings may increase demand but, disruption in supplies of raw materials and finished products nullify the effect. On the other hand, even if flow returns to normal, reduced income affects normal goods businesses. JEL Codes: R41


2020 ◽  
Vol 12 (3) ◽  
pp. 427-443
Author(s):  
Yubin Wang ◽  
Jingjing Wang ◽  
Xiaoyang Wang

PurposeThe authors explicitly evaluate the dynamic impact of five most concerned supply chain disruption scenarios, including: (1) a short-term shortage and price jump of corn supply in hog farms; (2) a shortage of market hogs to packing facilities; (3) disruption in breeding stock adjustments; (4) disruption in pork import; and (5) a combination of scenario (1)–(4).Design/methodology/approachThe agricultural supply chain experienced tremendous disruptions from the COVID-19 pandemic. To evaluate the impact of disruptions, the authors employ a system dynamics model of hog market to simulate and project the impact of COVID-19 on China hog production and pork consumption. In the model the authors explicitly characterize the cyclical pattern of hog market. The hog cycle model is calibrated using market data from 2018–2019 to represent the market situation during an ongoing African swine fever.FindingsThe authors find that the impacts of supply chain disruption are generally short-lived. Market hog transportation disruption has immediate impact on price and consumption. But the impact is smoothed out in six months. Delay in import shipment temporarily reduces consumption and raises hog price. A temporary increase of corn price or delay in breeding stock acquisition does not produce significant impact on national hog market as a whole, despite mass media coverage on certain severely affected regions.Originality/valueThis is the first evaluation of short-term supply chain disruption on China hog market from COVID-19. The authors employ a system dynamics model of hog markets with an international trade component. The model allows for monthly time step analysis and projection of the COVID-19 impact over a five-year period. The results and discussion have far-reaching implications for agricultural markets around the world.


Sign in / Sign up

Export Citation Format

Share Document