scholarly journals Indicators on the Impacts of Climate Change on Biodiversity in Germany—Data Driven or Meeting Political Needs?

2018 ◽  
Vol 10 (11) ◽  
pp. 3959
Author(s):  
Rainer Schliep ◽  
Ulrich Walz ◽  
Ulrich Sukopp ◽  
Stefan Heiland

When developing new indicators for policy advice, two different approaches exist and may be combined with each other. First, a data-driven, bottom-up approach determines indicators primarily by the availability of suitable data. Second, indicators can be developed by a top-down approach, on the basis of political fields of action and related normative goals. While the bottom-up approach might not meet the needs of an up-to-date policy advice, the top-down approach might lack the necessary data. To discuss these problems and possible solutions, we refer to the ongoing development of an indicator system on impacts of climate change on biodiversity in Germany, where a combination of both approaches has been successfully applied. We describe suitable indicators of this system and discuss the reasons for the remaining gaps. Both approaches, mentioned above, have advantages, constraints, and shortcomings. The scientific accuracy of the indicators, the availability of data and the purpose of policy advice have to be well-balanced while developing such indicator systems.

2013 ◽  
Vol 5 (2) ◽  
pp. 216-232
Author(s):  
Sibylle Kabisch ◽  
Ronjon Chakrabarti ◽  
Till Wolf ◽  
Wilhelm Kiewitt ◽  
Ty Gorman ◽  
...  

With regional variations, climate change has a significant impact on water quality deterioration and scarcity, which are serious challenges in developing countries and emerging economies. Often, effective projects to improve water management in the light of climate change are difficult to develop because of the complex interrelations between direct and indirect climate impacts and local perceptions of vulnerabilities and needs. Adaptation projects can be developed through a combination of participatory, bottom-up needs assessments and top-down analyses. Climate change impact chains can help to display the causal chain of climate signals and resulting impacts and thereby establish a system map as a basis for stakeholder discussions. This article aims to develop specific climate change impact chains for the water management sector in rural coastal India that combine bottom-up and top-down perspectives. Case studies from Tamil Nadu and Andhra Pradesh, India, provide a basis for the impact chains developed. Bottom-up data were gathered through a vulnerability and needs assessment in 18 villages complemented with top-down research data. The article is divided into four steps: (1) system of interest; (2) data on climate change signals; (3) climate change impacts based on top-down as well as bottom-up information; (4) specific impact chains complemented by initial climate change adaptation options.


2017 ◽  
Author(s):  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Benjamin Poulter ◽  
Anna Peregon ◽  
Philippe Ciais ◽  
...  

Abstract. Following the recent Global Carbon project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling frameworks) and bottom-up models, inventories, and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seems to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the EDGARv4.2 inventory, which should be revised to smaller values in a near future. Though the sectorial partitioning of six individual top-down studies out of eight are not consistent with the observed change in atmospheric 13CH4, the partitioning derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that, the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. Besides, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. The methane loss (in particular through OH oxidation) has not been investigated in detail in this study, although it may play a significant role in the recent atmospheric methane changes.


2017 ◽  
Vol 86 (3) ◽  
pp. 566-576 ◽  
Author(s):  
Marianne Pasanen‐Mortensen ◽  
Bodil Elmhagen ◽  
Harto Lindén ◽  
Roger Bergström ◽  
Märtha Wallgren ◽  
...  
Keyword(s):  
Land Use ◽  
Top Down ◽  

2016 ◽  
Vol 67 (8) ◽  
pp. 1175 ◽  
Author(s):  
Susannah M. Leahy ◽  
Garry R. Russ ◽  
Rene A. Abesamis

The question of whether biological systems are maintained by top-down versus bottom-up drivers is a recurring one in ecology. It is a particularly important question to address in the management of coral reefs, which are at risk from a variety of anthropogenic stressors. Here, we explicitly test whether the abundance of different feeding guilds of coral-associated Chaetodon butterflyfishes are controlled by top-down or bottom-up drivers, and we assess the relative influence of all statistically significant drivers. We find that the abundance and species richness of Chaetodon butterflyfishes are predominately determined by bottom-up drivers. The abundance of corallivores is primarily driven by availability of branching and tabular live corals, whereas the abundance of generalists is most strongly influenced by a negative association with macroalgal cover. We also find evidence of weak top-down control on the abundance of corallivorous butterflyfish by gape-limited mesopredators, but no such effects on generalist butterflyfish. Our findings indicate that conservation of coral reefs for Chaetodon butterflyfishes must include management at a larger spatial scale in order to reduce the effect of coral reef stressors such as declining water quality and climate change, but should also include implementation of fisheries management tools in order to increase local herbivory.


Author(s):  
Jayne F. Knott ◽  
Jo E. Sias ◽  
Eshan V. Dave ◽  
Jennifer M. Jacobs

Pavements are vulnerable to reduced life with climate-change-induced temperature rise. Greenhouse gas emissions have caused an increase in global temperatures since the mid-20th century and the warming is projected to accelerate. Many studies have characterized this risk with a top-down approach in which climate-change scenarios are chosen and applied to predict pavement-life reduction. This approach is useful in identifying possible pavement futures but may miss short-term or seasonal pavement-response trends that are essential for adaptation planning. A bottom-up approach focuses on a pavement’s response to incremental temperature change resulting in a more complete understanding of temperature-induced pavement damage. In this study, a hybrid bottom-up/top-down approach was used to quantify the impact of changing pavement seasons and temperatures on pavement life with incremental temperature rise from 0 to 5°C at a site in coastal New Hampshire. Changes in season length, seasonal average temperatures, and temperature-dependent resilient modulus were used in layered-elastic analysis to simulate the pavement’s response to temperature rise. Projected temperature rise from downscaled global climate models was then superimposed on the results to determine the timing of the effects. The winter pavement season is projected to end by mid-century, replaced by a lengthening fall season. Seasonal pavement damage, currently dominated by the late spring and summer seasons, is projected to be distributed more evenly throughout the year as temperatures rise. A 7% to 32% increase in the asphalt-layer thickness is recommended to protect the base and subgrade with rising temperatures from early century to late-mid-century.


Author(s):  
Jeremy Millard

In terms of public services, governments do not yet know how to treat users as different and unique individuals. At worst, users are still considered an undifferentiated mass, or at best as segments. However, the benefits of universal personalisation in public services are within reach technologically through e-government developments. Universal personalisation will involve achieving a balance between top-down government- and data-driven services, on the one hand, and bottom-up self-directed and user-driven services on the other. There are at least three main technological, organisational and societal drivers. First, top-down data-driven, often automatic, services based on the huge data resources available in the cloud and the technologies enabling the systematic exploitation of these by governments. Second, increasing opportunities for users themselves or their intermediaries to select or create their own service environments, bottom-up, through ‘user-driven’ services, drawing directly on the data cloud. Third, a move to ‘everyday’, location-driven e-government based largely on mobile smart phones using GPS and local data clouds, where public services are offered depending on where people are as well as who they are and what they are doing. This paper examines practitioners and researchers and describes model current trends based on secondary research and literature review.


Sign in / Sign up

Export Citation Format

Share Document