scholarly journals Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review

2019 ◽  
Vol 11 (4) ◽  
pp. 1162 ◽  
Author(s):  
Claudia Parra Paitan ◽  
Peter Verburg

The increasing international trade of agricultural products has contributed to a larger diversity of food at low prices and represents an important economic value. However, such trade can also cause social, environmental and economic impacts beyond the limits of the countries directly involved in the exchange. Agricultural systems are telecoupled because the impacts caused by trade can generate important feedback loops, spillovers, rebound effects, time lags and non-linearities across multiple geographical and temporal scales that make these impacts more difficult to identify and mitigate. We make a comparative review of current impact assessment methods to analyze their suitability to assess the impacts of telecoupled agricultural supply chains. Given the large impacts caused by agricultural production on land systems, we focus on the capacity of methods to account for and spatially allocate direct and indirect land use change. Our analysis identifies trade-offs between methods with respect to the elements of the telecoupled system they address. Hybrid methods are a promising field to navigate these trade-offs. Knowledge gaps in assessing indirect land use change should be overcome in order to improve the accuracy of assessments.

2011 ◽  
pp. 224-228
Author(s):  
Uwe Lahl

The study proposes a regional approach to calculating indirect land use change (iLUC). The goal is to determine the greenhouse gas emissions (GHG) of biofuels brought about by iLUC in a specific region. A regional approach can be based on the conditions specific to the respective region and the data for this region which is contained in country statistics. This makes the results more resilient. It also appears that LUC is mainly caused locally or regionally. Relevant policy scenarios for different regions were calculated with a regional model. The calculations show reliable results. It is possible to introduce such a regional model in regulations for combating iLUC. The analysis of the policy options for combating iLUC shows that a regional approach would have a much more effective steering effect.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 584 ◽  
Author(s):  
Zuzheng Li ◽  
Xiaoqin Cheng ◽  
Hairong Han

Ecosystem services (ES), defined as benefits provided by the ecosystem to society, are essential to human well-being. However, it remains unclear how they will be affected by land-use changes due to lack of knowledge and data gaps. Therefore, understanding the response mechanism of ecosystem services to land-use change is critical for developing systematic and sound land planning. In this study, we aimed to explore the impacts of land-use change on the three ecosystem services, carbon storage (CS), flood regulation (FR), and soil conservation (SC), in the ecological conservation area of Beijing, China. We first projected land-use changes from 2015 to 2030, under three scenarios, i.e., Business as Usual (BAU), Ecological Land Protection (ELP), and Rapid Economic Development (RED), by interactively integrating the Markov model (Quantitative simulation) with the GeoSOS-FLUS model (Spatial arrangement), and then quantified the three ecosystem services by using a spatially explicit InVEST model. The results showed that built-up land would have the most remarkable growth during 2015–2030 under the RED scenario (2.52% increase) at the expense of cultivated and water body, while forest land is predicted to increase by 152.38 km2 (1.36% increase) under the ELP scenario. The ELP scenario would have the highest amount of carbon storage, flood regulation, and soil conservation, due to the strict protection policy on ecological land. The RED scenario, in which a certain amount of cultivated land, water body, and forest land is converted to built-up land, promotes soil conservation but triggers greater loss of carbon storage and flood regulation capacity. The conversion between land-use types will affect trade-offs and synergies among ecosystem services, in which carbon storage would show significant positive correlation with soil conservation through the period of 2015 to 2030, under all scenarios. Together, our results provide a quantitative scientific report that policymakers and land managers can use to identify and prioritize the best practices to sustain ecosystem services, by balancing the trade-offs among services.


2020 ◽  
Vol 14 (5) ◽  
pp. 924-934 ◽  
Author(s):  
Vassilis Daioglou ◽  
Geert Woltjer ◽  
Bart Strengers ◽  
Berien Elbersen ◽  
Goizeder Barberena Ibañez ◽  
...  

Biofuels ◽  
2012 ◽  
Vol 3 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Birka Wicke ◽  
Pita Verweij ◽  
Hans van Meijl ◽  
Detlef P van Vuuren ◽  
Andre PC Faaij

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Daniel Brent ◽  
Sergey Rabotyagov

Biofuel policy in the United States is transitioning away from corn towards second-generation biofuels in part because of the debate over environmental damages from indirect land use change. We combine a spatially explicit parcel level model for land use change in Washington State with simulations for biofuel policy aimed at utilizing forest residue as feedstock. Using a spatially explicit model provides greater precision in measuring net returns to forestland and development and indicates which areas will be most impacted by biofuel policy. The effect of policy is simulated via scenarios of increasing net returns to forestry and of siting feedstock-processing plants. Our results suggest that forestland will increase from such a policy, leading to a net reduction in atmospheric carbon from indirect land use change. This is in contrast to the experience of corn ethanol where the change in carbon emissions is potentially positive and large in magnitude.


Sign in / Sign up

Export Citation Format

Share Document