scholarly journals Above-Ground Biomass Models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau, China

2019 ◽  
Vol 11 (6) ◽  
pp. 1674 ◽  
Author(s):  
Yanxing Dou ◽  
Yang Yang ◽  
Shaoshan An

The quantification of above-ground biomass is based on the calculation of carbon storage, which is important for the balance of carbon cycling. However, the allometric models of shrubs for calculating the above-ground biomass of shrubs in the Loess Plateau are scarce. In order to solve this issue, this study analyzed some highly correlated variables, including height (H), branch diameters (D), canopy volume (Cv), canopy area (Ca), and then built a regression model to predict the above-ground biomass in two common shrubs (Caragana korshinskii and Sophora viciifolia) in the Loess Plateau, China. The results show that the above-ground biomass of these two shrubs can be accurately predicted by H and D, and then we can use allometric model (y = axb) to calculate shrub above-ground biomass (including leaf biomass and branch biomass). Furthermore, the correlation between leaf biomass and branch biomass in Caragana korshinskii and Sophora viciifolia indicates that the components of above-ground biomass are closely related to each other. In addition, there is a strong linear relationship (p < 0.01) between the observed and estimated biomass values, which confirms the data accuracy of the above-ground biomass estimation models. In summary, these two biomass estimation models provide an accurate way to estimate the quantification of carbon for shrubs in the Loess Plateau.

2021 ◽  
Vol 21 ◽  
pp. 100462
Author(s):  
Sadhana Yadav ◽  
Hitendra Padalia ◽  
Sanjiv K. Sinha ◽  
Ritika Srinet ◽  
Prakash Chauhan

2020 ◽  
pp. 1-7
Author(s):  
Brandon R. Hays ◽  
Corinna Riginos ◽  
Todd M. Palmer ◽  
Benard C. Gituku ◽  
Jacob R. Goheen

Abstract Quantifying tree biomass is an important research and management goal across many disciplines. For species that exhibit predictable relationships between structural metrics (e.g. diameter, height, crown breadth) and total weight, allometric calculations produce accurate estimates of above-ground biomass. However, such methods may be insufficient where inter-individual variation is large relative to individual biomass and is itself of interest (for example, variation due to herbivory). In an East African savanna bushland, we analysed photographs of small (<5 m) trees from perpendicular angles and fixed distances to estimate above-ground biomass. Pixel area of trees in photos and diameter were more strongly related to measured, above-ground biomass of destructively sampled trees than biomass estimated using a published allometric relation based on diameter alone (R2 = 0.86 versus R2 = 0.68). When tested on trees in herbivore-exclusion plots versus unfenced (open) plots, our predictive equation based on photos confirmed higher above-ground biomass in the exclusion plots than in unfenced (open) plots (P < 0.001), in contrast to no significant difference based on the allometric equation (P = 0.43). As such, our new technique based on photographs offers an accurate and cost-effective complement to existing methods for tree biomass estimation at small scales with potential application across a wide variety of settings.


Sign in / Sign up

Export Citation Format

Share Document