scholarly journals Scenario-Based Extreme Flood Risk of Residential Buildings and Household Properties in Shanghai

2019 ◽  
Vol 11 (11) ◽  
pp. 3202 ◽  
Author(s):  
Xinmeng Shan ◽  
Jiahong Wen ◽  
Min Zhang ◽  
Luyang Wang ◽  
Qian Ke ◽  
...  

Extreme flooding usually causes huge losses of residential buildings and household properties, which is critical to flood risk analysis and flood resilience building in Shanghai. We developed a scenario-based multidisciplinary approach to analyze the exposure, losses and risks of residential buildings and household properties, and their spatial patterns at the neighborhood committee level in Shanghai, based on extreme storm flood scenarios of 1/200, 1/500, 1/1000 and 1/5000-year. Our findings show that the inundation area of the residential buildings caused by a 1/200-year storm flood reaches 24.9 km2, and the total loss of residential buildings and household properties is 29.7 billion CNY (Chinese Yuan) (or 4.4 billion USD), while the inundation area of residential buildings and the total loss increases up to 162.4 km2 and 366.0 billion CNY (or 54.2 billion USD), respectively for a 1/5000-year storm flood. The estimated average annual loss (AAL) of residential buildings and household properties for Shanghai is 590 million CNY/year (or 87.4 million USD/year), with several hot spots distributed around the main urban area and on the bank of the Hangzhou Bay. Among sixteen districts, Pudong has the highest exposure and annual expected loss, while the inner city is also subject to extreme flooding with an AAL up to near half of the total. An analysis of flood risk in each of 209 subdistricts/towns finds that those most vulnerable to storm flooding are concentrated in Pudong, Jiading, Baoshan Districts and the inner city. Our work can provide meaningful information for risk-sensitive urban planning and resilience building in Shanghai. The methodology can also be used for risk analysis in other coastal cities facing the threat of storm flooding.

2021 ◽  
Author(s):  
Corinne Bowers ◽  
Katherine A. Serafin ◽  
Jack W. Baker

Abstract. Atmospheric rivers (ARs) are a class of meteorologic phenomena that cause significant precipitation and flooding on the US West Coast. This work presents a new Performance-based Atmospheric River Risk Analysis (PARRA) framework that adapts existing concepts from probabilistic risk analysis and performance-based engineering for application in the context of AR-driven fluvial flooding. The PARRA framework is a chain of physically based models that link the atmospheric forcings, hydrologic impacts, and economic consequences of AR-driven fluvial flood risk together at consistent “pinch point” variables. Organizing around these pinch points makes the framework modular, in that models between pinch points can be updated without affecting the rest of the model chain, and it produces a probabilistic result that quantifies the uncertainty in the underlying system states. The PARRA framework can produce results beyond analyses of individual scenario events and can look towards prospective assessment of events or system changes that have not been seen in the historic record. The utility of the PARRA framework is demonstrated through a series of analyses in Sonoma County, California. Evaluation of a February 2019 case study AR event shows that the individual component models produce simulated distributions that capture the observed precipitation, streamflow, inundation, and damage. The component models are then run in sequence to generate a first-of-its-kind AR flood loss exceedance curve for Sonoma County. The prospective capabilities of the PARRA framework are presented through the evaluation of a hypothetical mitigation action. It was found elevating 150 homes, selected based on their proximity to the Russian River, was able to reduce the average annual loss by half. The loss results from the mitigated building portfolio are compared against the original case. While expected benefits were minimal for the smallest events, the larger, more damaging ARs were expected to see loss reductions of approximately $50 million per event. These results indicate the potential of the PARRA framework for examining other changes to flood risk at the community level, including future changes to the hazard, through climate change; exposure, through development; and/or vulnerability, through flood mitigation investments.


2017 ◽  
Vol 21 (11) ◽  
pp. 5781-5803 ◽  
Author(s):  
Oliver Wetter

Abstract. Historical hydrology is based on data derived from historical written, pictorial and epigraphic documentary sources. It lies at the interface between hydrology and environmental history, using methodologies from both disciplines basically with the goal of significantly extending the instrumental measurement period with experience from the pre-instrumental past. Recently this field of research has gained increased recognition as a tool to improve current flood risk estimations when EU guidelines regulated by law the quantitative consideration of previous floods.1 Awareness to consider pre-instrumental experience in flood risk analysis seems to have risen at the level of local and federal authorities in Switzerland as well. The 2011 Fukushima catastrophe probably fostered this rethinking process, when pressure from the media, society and politics as well as the regulations of the International Atomic Energy Agency (IAEA) forced the authorities to reassess the current flood risk analysis for Swiss nuclear power plants. In 2015 a historical hydrological study was commissioned by the Federal Office for the Environment (FOEN) to assess the magnitudes of pre-instrumental Aare River flood discharges, including the most important tributaries (the Saane, Emme, Reuss and Limmat rivers). The results of the historical hydrological study serve now as the basis for the main study, EXAR (commissioned under the lead of FOEN in cooperation with the Swiss Nuclear Safety Inspectorate (ENSI), the Swiss Federal Office of Energy (SFOE), the Federal Office for Civil Protection (FOCP), and the Federal Office of Meteorology and Climatology (MeteoSwiss)), which combines historical and climatological analysis with statistical approaches and mathematical models with the goal of better understanding the hazards and possible interactions that can be caused by extreme flood events. In a second phase the catchment of the River Rhine will be targeted as well. More recently several local historical hydrological studies of smaller catchments have been requested by the responsible local authorities. The course for further publicly requested historical hydrological analysis seems thus to have been set. This paper therefore intends to discuss the potential of historical hydrological analysis, with a focus on the specific situation in Switzerland. 1Guideline 2007/60/EG of the European Parliament and Council from 23 October 2007 on assessment and management of flood risks, Official Journal of the European Union, L 288, 27–34, Brussels, 2007.


2017 ◽  
Author(s):  
Oliver Wetter

Abstract. Historical hydrology bases on data derived from historical written-, pictorial and epigraphic documentary sources. It lies on the interface between hydrology and environmental history using methodologies from both disciplines basically with the goal to significantly extend the instrumental measurement period with the experience from the pre instrumental past. Recently this field of research gained some recognition as a tool to improve current flood risk estimations when EU guidelines regulated by law the quantitative consideration of previous floods. The awareness to consider pre instrumental experience in flood risk analysis seems to have risen at the level of local- and federal authorities in Switzerland as well. The 2011 Fukushima catastrophe probably fostered this rethinking process, when pressure from the media, society and politics as well as the regulations of the International Atomic Energy Agency (IAEA), forced the authorities to reassess the current flood risk analysis for Swiss nuclear power plants. In 2015 a historical hydrological study was commissioned by the Federal Office for Environment (FOEN) to assess the magnitudes of pre instrumental Aare river flood discharges including the most important tributaries (Saane-, Emme-, Reuss and Limmat river). The results of the mentioned historical hydrological study serve now as basis for the currently running main study EXAR [commissioned under the lead of FOEN in cooperation with the Swiss Nuclear Safety Inspectorate (ENSI), Swiss Federal Office of Energy (SFOE), Federal Office for civil protection (FOCP), Federal Office of Meteorology and Climatology (MeteoSwiss)] which combines historical- and climatological analysis with statistical approaches and mathematical models with the goal to better understand the hazards and possible interactions that can be caused by extreme flood events. In a second phase the catchment of Rhine River will be targeted as well. More recently several local historical hydrological studies of smaller catchments have been requested by responsible local authorities. The course for further publicly requested historical hydrological analysis seems thus to have been set. This paper therefore intends to discuss the potential of historical hydrological analysis with a focus on the specific situation in Switzerland.


2021 ◽  
Author(s):  
Amrie Singh ◽  
David Dawson ◽  
Mark Trigg ◽  
Nigel Wright

AbstractFlooding is an important global hazard that causes an average annual loss of over 40 billion USD and affects a population of over 250 million globally. The complex process of flooding depends on spatial and temporal factors such as weather patterns, topography, and geomorphology. In urban environments where the landscape is ever-changing, spatial factors such as ground cover, green spaces, and drainage systems have a significant impact. Understanding source areas that have a major impact on flooding is, therefore, crucial for strategic flood risk management (FRM). Although flood source area (FSA) identification is not a new concept, its application is only recently being applied in flood modelling research. Continuous improvements in the technology and methodology related to flood models have enabled this research to move beyond traditional methods, such that, in recent years, modelling projects have looked beyond affected areas and recognised the need to address flooding at its source, to study its influence on overall flood risk. These modelling approaches are emerging in the field of FRM and propose innovative methodologies for flood risk mitigation and design implementation; however, they are relatively under-examined. In this paper, we present a review of the modelling approaches currently used to identify FSAs, i.e. unit flood response (UFR) and adaptation-driven approaches (ADA). We highlight their potential for use in adaptive decision making and outline the key challenges for the adoption of such approaches in FRM practises.


2012 ◽  
Vol 105 ◽  
pp. 64-72 ◽  
Author(s):  
F.L.M. Diermanse ◽  
C.P.M. Geerse

Author(s):  
Niloy Pramanick ◽  
Rituparna Acharyya ◽  
Sandip Mukherjee ◽  
Sudipta Mukherjee ◽  
Indrajit Pal ◽  
...  

Author(s):  
A. J. Adeloye ◽  
F. D. Mwale ◽  
Z. Dulanya

Abstract. In response to the increasing frequency and economic damages of natural disasters globally, disaster risk management has evolved to incorporate risk assessments that are multi-dimensional, integrated and metric-based. This is to support knowledge-based decision making and hence sustainable risk reduction. In Malawi and most of Sub-Saharan Africa (SSA), however, flood risk studies remain focussed on understanding causation, impacts, perceptions and coping and adaptation measures. Using the IPCC Framework, this study has quantified and profiled risk to flooding of rural, subsistent communities in the Lower Shire Valley, Malawi. Flood risk was obtained by integrating hazard and vulnerability. Flood hazard was characterised in terms of flood depth and inundation area obtained through hydraulic modelling in the valley with Lisflood-FP, while the vulnerability was indexed through analysis of exposure, susceptibility and capacity that were linked to social, economic, environmental and physical perspectives. Data on these were collected through structured interviews of the communities. The implementation of the entire analysis within GIS enabled the visualisation of spatial variability in flood risk in the valley. The results show predominantly medium levels in hazardousness, vulnerability and risk. The vulnerability is dominated by a high to very high susceptibility. Economic and physical capacities tend to be predominantly low but social capacity is significantly high, resulting in overall medium levels of capacity-induced vulnerability. Exposure manifests as medium. The vulnerability and risk showed marginal spatial variability. The paper concludes with recommendations on how these outcomes could inform policy interventions in the Valley.


Sign in / Sign up

Export Citation Format

Share Document