scholarly journals Multiple Cropping System Expansion: Increasing Agricultural Greenhouse Gas Emissions in the North China Plain and Neighboring Regions

2019 ◽  
Vol 11 (14) ◽  
pp. 3941 ◽  
Author(s):  
Xueyan Zhang

The increase of agricultural greenhouse gas (GHG) emissions has become a significant issue for China, affecting the achievement of its Nationally Determined Contributions under the Paris Agreement. Expansion of the large-scale multiple cropping system as a consequence of climate warming could be a major driving force of this increase. In this study, life cycle assessment was employed to identify agricultural GHG emissions due to the expansion of the multiple cropping system in the North China Plain and neighboring regions. We found that agricultural greenhouse gas emissions have increased from 41.34 to 120.87 Tg CO2-eq/yr over the past 30 years, and the expansion of the multiple cropping system has contributed to 13.89% of this increment. Furthermore, the increases in straw handling and agricultural inputs which are related to multiple cropping systems have also played an important role. Results of our study demonstrate that the expansion of the multiple cropping system contributes considerably to increases in agricultural GHG emissions in the North China Plain and neighboring regions. Therefore, it can be concluded that the sustained northward expansion of the multiple cropping system will further elevate agricultural GHG emissions in China, and this should be considered while formulating policies to reduce GHG emissions from agriculture.

2022 ◽  
Vol 276 ◽  
pp. 108366
Author(s):  
He Xiao ◽  
Harold M. van Es ◽  
Joseph P. Amsili ◽  
Qianqian Shi ◽  
Jingbo Sun ◽  
...  

2018 ◽  
Vol 110 (3) ◽  
pp. 451-465 ◽  
Author(s):  
Yawen Shen ◽  
Peng Sui ◽  
Jianxiong Huang ◽  
Dong Wang ◽  
Joann K. Whalen ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liantao Hou ◽  
Yinsheng Yang ◽  
Xiaoyi Zhang ◽  
Chunming Jiang

Purpose The relationship between farm size and greenhouse gas (GHG) emissions has not been clearly defined. This paper aims to assess and compare the impact of farm size on greenhouse gas (GHG) emissions derived from wheat and maize production in the North China Plain (NCP), one of the most important agricultural regions in China. Design/methodology/approach A field survey through face-to-face interviews was conducted to collect the primary data, and life cycle assessment method, a worldwide comparable framework, was then adopted to characterize the farm-size effect on greenhouse gas (GHG) wheat and maize production in NCP. Findings It was confirmed that GHG emissions from N fertilizer production and use were the primary contributor to total carbon footprint (CF). As farm size increased, maize yield increased but wheat yield barely changed, while area-scaled and yield-scaled CF declined for both crops. These results were supposed to relate to utilize the inputs more efficiently resulting from increased application of modern agriculture methods on larger operations. It was also found maize not only had higher grain yields, but possessed much smaller CFs. More notably, the reduction of CF with farm size seemed to be more sensitive for maize as compared to wheat. To further mitigate GHG emissions, farm size should better be larger for wheat than for maize. Originality/value This study provides useful information guide for Chinese agriculture in increasing crop production, raising farm income and relieving environmental burdens caused by the misuse of agricultural resources.


Sign in / Sign up

Export Citation Format

Share Document