scholarly journals Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain

2017 ◽  
Vol 193 ◽  
pp. 1-12 ◽  
Author(s):  
Honglin Zhong ◽  
Laixiang Sun ◽  
Günther Fischer ◽  
Zhan Tian ◽  
Harrij van Velthuizen ◽  
...  
2003 ◽  
Vol 83 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Xuejun Liu ◽  
Xiaotang Ju ◽  
Fusuo Zhang ◽  
Jiarong Pan ◽  
Peter Christie

2019 ◽  
Vol 58 (12) ◽  
pp. 2605-2615
Author(s):  
Qi Hu ◽  
Xueqing Ma ◽  
Xuebiao Pan ◽  
Huang Binxiang

AbstractClimate warming in the North China Plain (NCP) is expected to greatly affect corn production. On the basis of a comprehensive consideration of the double-cropping system, we investigated the impacts of climate warming in the past 55 years on the planting boundaries and areas of varieties of summer corn with different maturity levels. In addition, we tried to explore the probable reasons for the changes in planting boundaries. Climate warming caused a northward shift in the planting boundaries of summer corn, resulting in the expansion of the total planting area. However, the trend for the planting area of each belt of corn maturity was not always consistent. Because of the advanced planting date and delayed physiological maturation date, the growing season of corn in the NCP has been prolonged in the past 55 years. Climate warming also increased the active accumulated temperature with a threshold of 10° (AAT10) during the corn growing season by 73.2°C decade−1, which was mainly caused by the increase in the number of days with a daily temperature over 10°C. In summary, the planting boundaries of varieties of summer corn with different maturity levels have greatly changed due to climate change, and corn production in the NCP could benefit from climate warming through the greater planting area and longer growing season.


2020 ◽  
Vol 12 (11) ◽  
pp. 4588
Author(s):  
Huanyuan Wang ◽  
Baoguo Li ◽  
Liang Jin ◽  
Kelin Hu

The North China Plain (NCP) is one of the most important grain production regions in China. However, it currently experiences water shortage, severe nonpoint source pollution, and low water and N use efficiencies (WUE and NUE). To explore sustainable agricultural development in this region, a field experiment with different cropping systems was conducted in suburban Beijing. These cropping systems included a winter wheat and summer maize rotation system for one year (WM), three harvests (winter wheat-summer maize-spring maize) in two years (HT), and continuous spring maize monoculture (CS). Novel ways were explored to improve WUE and NUE and to reduce N loss via the alternative cropping system based on the simulation results of a soil-crop system model. Results showed that the annual average yields were ranked as follows: WM > HT > CS. The N leaching of WM was much larger than that of HT and CS. WUE and NUE were ranked as follows: WM < HT < CS. Comprehensive evaluation indices based on agronomic and environmental effects indicated that CS or HT have significant potential for approaches characterized by water-saving, fertilizer-saving, high-WUE, and high-NUE properties. Once spring maize yield reached an ideal level HT and CS became a high-yield, water-saving, and fertilizer-saving cropping systems. Therefore, this method would be beneficial to sustainable agricultural development in the NCP.


2007 ◽  
Vol 49 (10) ◽  
pp. 1517-1526 ◽  
Author(s):  
Quanxiao Fang ◽  
Yuhai Chen ◽  
Qiang Yu ◽  
Zhu Ouyang ◽  
Quanqi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document