scholarly journals Goal-Programming-Based Multi-Objective Optimization in Off-Grid Microgrids

2020 ◽  
Vol 12 (19) ◽  
pp. 8119
Author(s):  
Akhtar Hussain ◽  
Hak-Man Kim

Renewable-based off-grid microgrids are considered as a potential solution for providing electricity to rural and remote communities in an environment-friendly manner. In such systems, energy storage is commonly utilized to cope with the intermittent nature of renewable energy sources. However, frequent usage may result in the fast degradation of energy storage elements. Therefore, a goal-programming-based multi-objective optimization problem has been developed in this study, which considers both the energy storage system (battery and electric vehicle) degradation and the curtailment of loads and renewables. Initially, goals are set for each of the parameters and the objective of the developed model is to minimize the deviations from those set goals. Degradation of battery and electric vehicles is quantified using deep discharging, overcharging, and cycling frequency during the operation horizon. The developed model is solved using two of the well-known approaches used for solving multi-optimization problems, the weighted-sum approach and the priority approach. Five cases are simulated for each of the methods by varying weight/priority of different objectives. Besides this, the impact of weight and priority values selected by policymakers is also analyzed. Simulation results have shown the superiority of the weighted-sum method over the priority method in solving the formulated problem.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1801
Author(s):  
Chenyun Pan ◽  
Shengyu Tao ◽  
Hongtao Fan ◽  
Mengyao Shu ◽  
Yong Zhang ◽  
...  

Optimal operation of energy storage systems plays an important role in enhancing their lifetime and efficiency. This paper combines the concepts of the cyber–physical system (CPS) and multi-objective optimization into the control structure of the hybrid energy storage system (HESS). Owing to the time-varying characteristics of HESS, combining real-time data with physical models via CPS can significantly promote the performance of HESS. The multi-objective optimization model designed in this paper can improve the utilization of supercapacitors, reduce energy consumption, and prevent the state of charge (SOC) of HESS from exceeding the limitation. The new control scheme takes the characteristics of the components of HESS into account and is beneficial in reducing battery short-term power cycling and high discharge currents. The rain-flow counting algorithm is applied for battery life prediction to quantify the benefits of the HESS under the control scheme proposed. A much better power-sharing relationship between the supercapacitor and the lithium–ion battery (LiB) can be observed from the SIMULINK results and the case study with our new control scheme. Moreover, compared to the traditional low-pass filter control method, the battery lifetime is quantifiably increased from 3.51 years to 10.20 years while the energy efficiency is improved by 1.56%.


2016 ◽  
Vol 825 ◽  
pp. 153-160
Author(s):  
Adéla Hlobilová ◽  
Matěj Lepš

This paper deals with a reconstruction of random media via multi-objective optimization. Two statistical descriptors, namely a two-point probability function and a two-point lineal path function, are repetitively evaluated for the original medium and the reconstructed image to appreciate the improvement in the optimization progress. Because of doubts of the weights setting in the weighted-sum method, purely multi-objective optimization routine Non-dominated Sorting Genetic Algorithm~II is utilized. Three operators are compared for creating new offspring populations that satisfy a prescribed volume fraction constraint. The main contribution is in the testing of the proposed methodology on several benchmark images.


Sign in / Sign up

Export Citation Format

Share Document