scholarly journals Sustainable Engineering: Load Transfer Characterization for the Structural Design of Thinner Concrete Pavements

2020 ◽  
Vol 12 (21) ◽  
pp. 9153
Author(s):  
Andrés César ◽  
Mauricio Pradena

Concrete pavements are characterized by their high durability and low conservation costs. However, concrete production causes large amounts of harmful emissions. In this context, short slab pavements allow us to reduce the slab thickness and the amount of concrete used in their construction. These benefits are only valid if the design assumptions are fulfilled, one of which is the provision of enough Load Transfer Efficiency (LTE) by the aggregate interlock. However, the current design method for short slabs does not relate the LTE with the Crack Width (CW) under the joints. This can jeopardize the sustainable benefits of short slabs. The objective of this study is to propose a method to develop the LTE–CW relationship for the short slabs’ design. The sustainable and accessible approach adopted in the proposal represents a paradigm shift compared to the traditional methods, which are limited to laboratories with sufficient resources to perform real-scale testing. The results show that it is possible to develop the LTE–CW relation in a sustainable manner. Furthermore, the aggregates that fulfill the technical specifications for pavements provide enough LTE when most of the joints are activated. When that happens, short slab pavements reduce environmental and human health impacts by 33% and 26%, respectively.

Author(s):  
Neeraj Buch ◽  
Dan G. Zollinger

The results of an in-depth study of factors that affect dowel looseness in jointed concrete pavements are presented. The laboratory investigation revealed the influence of aggregate type (in relation to oxide content), aggregate texture and shape, bearing stress (dowel diameter and crack width), load magnitude, and number of load cycles on the magnitude of dowel looseness and the subsequent loss in load transfer efficiency across saw-cut joints. A discussion is included on the development of an empirical-mechanistic dowel looseness prediction model based on the experimental results. Results of the sensitivity analysis of the dowel looseness prediction model (using laboratory data) are also presented. An associated scope of this research was to develop a relationship between dowel looseness and loss of load transfer efficiency. The sequential use of the dowel looseness prediction model and its relationship to load transfer efficiency allows the design engineer to predict load transfer characteristics of a joint, based on calculated (or measured) dowel looseness. The framework suggested to predict dowel looseness can then be incorporated into a fault prediction model for doweled joints.


2012 ◽  
Vol 178-181 ◽  
pp. 1152-1155 ◽  
Author(s):  
Luo Ke Li ◽  
Yun Liang Li ◽  
Yi Qiu Tan ◽  
Zhong Jun Xue

In a jointed plain concrete pavements, the dowel bar system are used to provide lateral load transfer across transverse joint. Corrosion of commonly used steel dowel in engineering practice reduces their service life and costs considerable maintenance and repair spending for concrete pavements. The objective of this study focus primarily on the performance of none eroded GFRP dowel on LTE( load transfer efficiency) with the help of a three-dimensional finite-element model. The amount of LTE can be obtained directly from comparing the maximum deflection of the concrete slab and the level tensile stress under the concrete slab. According to the finite element results, the larger-diameter GFRP dowel are found to perform the best in this study.


2020 ◽  
Vol 15 (1) ◽  
pp. 232-250 ◽  
Author(s):  
Mauricio Pradena ◽  
Lambert Houben ◽  
Andrés César

Aggregate interlock is the dominant load transfer mechanism in non-dowelled Jointed Plain Concrete Pavements, as the innovative short concrete slabs. Although the Load Transfer Efficiency of this pavement innovation is based on that mechanism, the structural design methods do not relate the Load Transfer Efficiency by aggregate interlock with its direct cause, which is the Crack Width under the joints. The objective of the present article is to characterise in the laboratory the Load Transfer Efficiency−Crack Width relation for innovative short slabs Jointed Plain Concrete Pavements. Additionally, as an alternative to large-scale laboratory tests to study the Load Transfer Efficiency, a practical test on a reduced scale is proposed. The results confirmed that short slabs Jointed Plain Concrete Pavements with high-quality aggregates are able to provide adequate Load Transfer Efficiency (above 70%) without dowels bars. Based on the laboratory results, complemented with previous field data, a Load Transfer Efficiency−Crack Width curve is proposed and made available for structural design methods of short slabs Jointed Plain Concrete Pavements. Finally, the laboratory test on a reduced scale is useful to develop specific Load Transfer Efficiency−Crack Width relations using standard equipment available in traditional concrete laboratories.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bangyi Liu ◽  
Yang Zhou ◽  
Linhao Gu ◽  
Dalin Wang ◽  
Xiaoming Huang

Dowel bars are arranged between two slabs of jointed plain concrete pavements to transfer load between them. The looseness of these dowel bars leads to the decrease of the load transfer efficiency (LTE). Meanwhile, repeated vehicle load can result in void near the joints. In this paper, the behaviors of concrete pavement under the effect of void size and joint stiffness were studied by using ABAQUS software. The FEA model was calibrated for different element parameters based on mesh convergence analysis and validated by comparison with previous studies. The voids beneath slabs were considered in this study, including the loaded slab and unloaded slab. The different effects of base course modulus on the stress of loaded slab are also analysed. It is concluded that the results show that the void size and joint stiffness affect the stress of the loaded plate. Smaller void size and larger joint stiffness will lead to the maximum stress located at the bottom of the loaded slab, and the void size has little effect on the stress of the loaded slab. Otherwise, the larger void size will cause larger stress. The effect of base modulus on stress is similar.


2016 ◽  
Vol 2 (2) ◽  
pp. 38-51 ◽  
Author(s):  
Ahmed Ebrahim Abu El-Maaty ◽  
Ghada Mousa Hekal ◽  
Eman Muhammed Salah El-Din

Concrete pavements have been widely used for constructing runways, taxiways, and apron areas at airports. The aviation industry has responded to increased demand for air travel by developing longer, wider, and heavier aircraft with increasing numbers of wheels to support the aircraft while in ground operation. Many researchers developed their models based on the finite element method (FEM) for the analysis of jointed concrete pavement. Despite the notable improvement, important considerations were overlooked. These simplifications may affect the results of the developed models and make them unrealistic. Sensitivity studies were conducted in this study to investigate the effect of the loading parameters on the load transfer efficiency (LTE) indictors where concept of LTE is fundamental in airfield design procedures.  The effect of main gear loading magnitudes in different wheel configurations combined with positive and negative thermal gradients was investigated. The verification process was presented to increases the confidence in the model results. Understanding the response of rigid airfield pavement under such circumstances is important developing a new pavement design procedure, as well as implementing a suitable remedial measure for existing pavements. The results obtained that utilizing a dynamic load allows studying the fatigue cycles that pavement can be subjected under different wheel configurations.   Moreover, the change in the thermal gradient from positive to negative significantly changed the slab curvature shape.


Author(s):  
Mustaque Hossain ◽  
John B. Wojakowski

Six jointed reinforced concrete pavement and one jointed plain concrete pavement test sections on US-69 in Miami County, Kansas, constructed in 1979 have been surveyed annually for faulting for the past 9 years. Falling weight deflectometer tests were conducted in 1995 to assess the load transfer efficiency of the joints. The results show that, in general, as the original concrete density increases due to improved consolidation, the rate of increase of the joint fault depth decreases at doweled joints at a given pavement age. The occurrence of joint faulting is much more severe when load transfer devices are not present; this was observed even for the pavement section built on a nonerodible subbase. Improved consolidation sometimes appeared to help improve load transfer, resulting in a lower rate of faulting. Thus, the mandatory density requirement of 98 percent rodded unit weight, which has been in effect since 1980, has undoubtedly led to better joint performance for concrete pavements in Kansas.


Sign in / Sign up

Export Citation Format

Share Document