scholarly journals Empirical Study of the Spatial Spillover Effect of Transportation Infrastructure on Green Total Factor Productivity

2020 ◽  
Vol 13 (1) ◽  
pp. 326
Author(s):  
Xi Liang ◽  
Pingan Li

Transportation infrastructure promotes the regional flow of production. The construction and use of transportation infrastructure have a crucial effect on climate change, the sustainable development of the economy, and Green Total Factor Productivity (GTFP). Based on the panel data of 30 provinces in China from 2005 to 2017, this study empirically analyses the spatial spillover effect of transportation infrastructure on the GTFP using the Malmquist–Luenberger (ML) index and the dynamic spatial Durbin model. We found that transportation infrastructure has direct and spatial spillover effects on the growth of GTFP; highway density and railway density have significant positive spatial spillover effects, and especially-obvious immediate and lagging spatial spillover effects in the short-term. We also note that the passenger density and freight density of transportation infrastructure account for a relatively small contribution to the regional GTFP. Considering environmental pollution, energy consumption, and the enriching of the traffic infrastructure index system, we used the dynamic spatial Durbin model to study the spatial spillover effects of transportation infrastructure on GTFP.

2021 ◽  
Vol 13 (4) ◽  
pp. 2390
Author(s):  
Xu Dong ◽  
Yali Yang ◽  
Xiaomeng Zhao ◽  
Yingjie Feng ◽  
Chenguang Liu

A vast theoretical and empirical literature has been devoted to exploring the relationship between environmental regulation and total factor productivity (TFP), but no consensus has been reached and the reason may be attributed to the fact that the resource reallocation effect of environmental regulation is ignored. In this paper, we introduce resource misallocation in the process of discussing the impact of environmental regulation on TFP, taking China’s provincial industrial panel data from 1997 to 2017 as a sample, and the spatial econometric method is employed to investigate whether environmental regulation has a resource reallocation effect and affects TFP. The results indicate that there is a U-shaped relationship between environmental regulation and industrial TFP and a negative spatial spillover effect of environmental regulation on industrial TFP at the provincial level in China. Both capital misallocation and labor misallocation will lead to the loss of industrial TFP. Capital misallocation has a negative spatial spillover effect on industrial TFP, while labor misallocation is just the opposite. Environmental regulation can produce a positive resource reallocation effect, which in turn promotes the industrial TFP in the range of 28% to 33%, while capital misallocation and labor misallocation are only partial mediator.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Junhao Zhong ◽  
Tinghui Li

The relationship between financial development and green economic growth has received much attention in recent years. Research on the relationship between financial development and green total factor productivity (GTFP) is of great importance to China and other countries. This study has attempted to reveal the spatial distribution of China’s provincial GTFP and impact of financial development on GTFP by using the method of GML index based on SBM-DDF and the spatial Durbin model (SDM) during the period 1996–2015. Innovation is added to the SDM to reflect the influencing mechanism of financial development on GTFP. The empirical results show the following: (1) The mean of China’s provincial GTFP showed a U-shaped curve in 1996–2015. (2) China’s provincial financial development promotes the growth of GTFP through innovation channel. The reason is that financial development boosts eco-friendly innovation and the introduction of energy saving technology, leading to a decrease in energy consumption and pollutant emissions. (3) Increasing the level of financial development in the surrounding areas will restrain local GTFP. Our results provide new evidence that China’s regional financial development has a spatial spillover effect. (4) China’s provincial GTFP has a significant spatial positive correlation. Finally, several policy implications can be summarized to China’s 30 provinces.


Author(s):  
Bo Sun ◽  
Bo Wang

Background: Air pollution is one source of harm to the health of residents, and the impact of air pollution on health expenditure has become a hot topic worldwide. However, few studies aim at the spatial spillover effects of air pollution on the health expenditure of rural residents (HE-RR), including the impact on the health expenditure in neighboring areas. Objective: Based on the existing research, this paper further introduces the spatial dimension and uses the Spatial Durbin model to discuss the impact of environmental pollution on the health expenditure of rural residents (HE-RR). Methods: Based on provincial panel data during 2002–2015 in China, the Spatial Durbin model was used to investigate the spatial spillover effect of the average annual concentration of PM2.5 (AAC-PM2.5) on the health expenditure of rural residents (HE-RR). Results: There was a significant positive correlation between AAC-PM2.5 and health expenditure of rural residents (HE-RR) in neighboring areas at a significant level of 5% (COEF: 2.546, Z:2.340), that is, AAC-PM2.5 has a spatial spillover effect on PC-HE-RR in neighboring areas, and the spatial spillover effect is greater than the direct effect. The migration and diffusion of PM2.5 pollution will affect the air quality of neighboring areas, leading to the health risk not only from the local PM2.5 pollution but also the nearby PM2.5 pollution. Conclusion: The results show a significant positive relationship between air pollution and HE-RR in neighboring areas, and the spatial spillover effect is greater than the direct effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shen Zhong ◽  
Hongli Wang

AbstractForestry plays an essential role in reducing CO2 emissions and promoting green and sustainable development. This paper estimates the CO2 emissions of 30 provinces in China from 2008 to 2017, and uses Global DEA-Malmquist to measure the total factor productivity of the forestry industry and its decomposition index. On this basis, by constructing a spatial econometric model, this paper aims to empirically study the impact of forestry industry's total factor productivity and its decomposition index on CO2 emissions, and further analyze its direct, indirect and total effects. The study finds that the impact of forestry industry's total factor productivity on CO2 emissions shows an "inverted U-shaped" curve and the inflection point is 0.9395. The spatial spillover effect of CO2 emissions is significantly negative. The increase of CO2 emissions in adjacent areas will provide a "negative case" for the region, so that the region can better address its own energy conservation and emission reduction goals. TFP of forestry industry also has positive spatial spillover effect. However, considering the particularity of forestry industry, this effect is not very significant. For other factors, such as foreign direct investment, urbanization level, industrial structure and technology market turnover will also significantly affect regional CO2 emissions.


2021 ◽  
pp. 135481662110211
Author(s):  
Honghong Liu ◽  
Ye Xiao ◽  
Bin Wang ◽  
Dianting Wu

This study applies the dynamic spatial Durbin model (SDM) to explore the direct and spillover effects of tourism development on economic growth from the perspective of domestic and inbound tourism. The results are compared with those from the static SDM. The results support the tourism-led-economic-growth hypothesis in China. Specifically, domestic tourism and inbound tourism play a significant role in stimulating local economic growth. However, the spatial spillover effect is limited to domestic tourism, and the spatial spillover effect of inbound tourism is not significant. Furthermore, the long-term effects are much greater than the short-term impact for both domestic and inbound tourism. Plausible explanations of these results are provided and policy implications are drawn.


2021 ◽  
Vol 13 (14) ◽  
pp. 8032
Author(s):  
Chengzhuo Wu ◽  
Li Zhuo ◽  
Zhuo Chen ◽  
Haiyan Tao

Cities in an urban agglomeration closely interact with each other through various flows. Information flow, as one of the important forms of urban interactions, is now increasingly indispensable with the fast development of informatics technology. Thanks to its timely, convenient, and spatially unconstrained transmission ability, information flow has obvious spillover effects, which may strengthen urban interaction and further promote urban coordinated development. Therefore, it is crucial to quantify the spatial spillover effect and influencing factors of information flows, especially at the urban agglomeration scale. However, the academic research on this topic is insufficient. We, therefore, developed a spatial interaction model of information flow (SIM-IF) based on the Baidu Search Index and used it to analyze the spillover effects and influencing factors of information flow in the three major urban agglomerations in China, namely Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) in the period of 2014–2019. The results showed that the SIM-IF performed well in all three agglomerations. Quantitative analysis indicated that the BTH had the strongest spillover effect of information flow, followed by the YRD and the PRD. It was also found that the hierarchy of cities had the greatest impact on the spillover effects of information flow. This study may provide scientific basis for the information flow construction in urban agglomerations and benefit the coordinated development of cities.


Kybernetes ◽  
2020 ◽  
Vol 49 (11) ◽  
pp. 2737-2753
Author(s):  
Hui Wang ◽  
Meiqing Zhang

Purpose The large-scale construction of China’s transportation infrastructure has driven the flow of elements between regions, which has provided convenient conditions for the accumulation of advantageous resources. Design/methodology/approach Based on the panel data of 31 provinces in China in the past 2003-2017 years, this paper applies the spatial econometric model and partial differential method and empirically analyzes the spatial spillover effect of transportation infrastructure on employment in the service industry under four spatial weighting matrices. Findings The results show that for every 1 per cent increase in the level of transportation infrastructure, the employment density of the service industry in the region can be increased by 0.1274 per cent. It is worth noting that roads promote the employment of the service industry more than railways and inland waterways. However, inland waterways have not shown positive effects. The results on spatial spillover of transportation infrastructure indicate that railway has obvious promotion effect on the employment level of service industry in the surrounding area, while the highway has hindered the effect. The spatial spillover effect of inland waterway is not obvious. Originality/value The value of this paper is to consider the impact of China’s transportation infrastructure on employment in a particular industry, especially in the service industry. The research will help to provide empirical evidence for policymakers. The government needs to invest and build transportation infrastructure based on the stage and development potential of the employment development of the regional service industry.


Sign in / Sign up

Export Citation Format

Share Document