scholarly journals Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018

2021 ◽  
Vol 13 (2) ◽  
pp. 827
Author(s):  
Yanru Wang ◽  
Xiaojuan Zhang ◽  
Peihao Peng

Monitoring the spatio-temporal variation of the land-use/land cover change (LULC) and ecosystem service value (ESV) changes will help achieve regional sustainable development and management. Derong County is a part of the Hengduan Mountains area, the most crucial ecological functional area in China, and LULC has changed tremendously in the past 30 years. However, the effects of LULC changes on ecosystem services is not well understood. Based on 1992, 1995, 2005, 2013, and 2018 remote sensing images, we used visual interpretation to obtain LULC data and used global value coefficients and modified local value coefficients to assess the spatial-temporal changes of ESV and LULC from 1992 to 2018. The results showed that: (1) From 1992 to 2018, shrubland and grassland decreased, while built-up land, snow, forestland, water body, and cropland area increased. (2) The ESV with an overall decrease of 0.25 × 108 yuan, ecological projects have played a positive role in improving ESV. In contrast, the main decrease factor of ESV was the increase in agricultural economic development and urban expansion from 1992 to 2018. (3) The ESV spatial distribution indicated the value density of ESV was on the decline, and with the greatest deterioration in Dianyagong. The highest density of ESV area is distributed in Waka, and the lowest density of ESV area is distributed in Bari. This research points out the important role of Derong County in the regional life support system and provides a scientific reference for the sustainable management of dry-hot valley regions’ land resources and ecosystem services.

Resources ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 37 ◽  
Author(s):  
Sekela Twisa ◽  
Mohamed Mwabumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Land-use/land-cover changes are considered the dominant form of anthropogenic pressure on the environment, causing changes in ecosystem service patterns and affecting water supply services. Using the spatial econometric technique, we analysed the impact of land-use/land-cover change on water ecosystem services for domestic use upstream and downstream of the Wami River Basin. The results in terms of land-use/land-cover classes during the study period (2011–2016) indicate that cultivated land showed maximum positive changes in both sub-catchments, while bushland and woodland showed maximum negative changes upstream and downstream. The results showed that bushland, woodland, cultivated land, and grassland were significantly correlated with water point characteristics in both sub-catchments. For functionality characteristics, a significant effect was observed in bushland and grassland upstream and downstream, respectively, while sufficient water was found in woodland upstream and grassland downstream. Moreover, bushland was observed to have a significant number of water points with poor quality of water upstream, and a substantial number of water points with good quality of water were found in grassland downstream. We found that all measured land-use/land-cover changes and water point characteristic correlations were statistically significant; therefore, we concluded that land-use/land-cover change affects the water ecosystem in the basin. These results could facilitate decision-making and development of related policies and might support finding sustainable strategies for water ecosystem services for domestic use.


Author(s):  
Negasi Solomon ◽  
Alcade C. Segnon ◽  
Emiru Birhane

Despite their importance as sources of ecosystem services supporting the livelihoods of millions of people, forest ecosystems have been changing into other land use systems over the past decades across the world. While forest cover change dynamics have been widely documented in various ecological systems, how these changes affect ecosystem service values has received limited attention. In this study we assessed the impact of land-use/land-cover dynamics on ecosystem service values in dry Afromontane forest in Northern Ethiopia. We estimated ecosystem service values and their changes based on the benefit transfer method using land cover data of the years 1985, 2000, and 2016 with their corresponding locally valid value coefficients and from the Ecosystem service valuation database. The total ecosystem service values of the whole study area were about USD 16.6, 19.0, and 18.1 million in 1985, 2000, and 2016, respectively. The analyses indicated an increase in ecosystem service values from 1985 to 2000 and a decrease in ecosystem service values from 2000 to 2016. Similarly, the contribution of specific ecosystem services increased in the first study period and decreased in the second study period. The findings highlight how forest cover dynamics can be translated into changes in ecosystem service values in dry Afromontane forest ecosystems in Northern Ethiopia and showed how specific ecosystem services contributed to the observed trends. The findings also illustrated the temporal heterogeneity in the impacts of land-use/land-cover dynamics on values of ecosystem services. The findings can serve as crucial inputs for policy and strategy formulations for the sustainable use and management of forest resources and can also guide the allocation of limited resources among competing demands to safeguard the ecosystems that offer the best-valued services.


2018 ◽  
Vol 10 (10) ◽  
pp. 3580 ◽  
Author(s):  
Xiaojuan Lin ◽  
Min Xu ◽  
Chunxiang Cao ◽  
Ramesh P. Singh ◽  
Wei Chen ◽  
...  

Due to urban expansion, economic development, and rapid population growth, land use/land cover (LULC) is changing in major cities around the globe. Quantitative analysis of LULC change is important for studying the corresponding impact on the ecosystem service value (ESV) that helps in decision-making and ecosystem conservation. Based on LULC data retrieved from remote-sensing interpretation, we computed the changes of ESV associated with the LULC dynamics using the benefits transfer method and geographic information system (GIS) technologies during the period of 1992–2018 following self-modified coefficients which were corrected by net primary productivity (NPP). This improved approach aimed to establish a regional value coefficients table for facilitating the reliable evaluation of ESV. The main objective of this research was to clarify the trend and spatial patterns of LULC changes and their influence on ecosystem service values and functions. Our results show a continuous reduction in total ESV from United States (US) $1476.25 million in 1992, to US $1410.17, $1335.10, and $1190.56 million in 2001, 2009, and 2018, respectively; such changes are attributed to a notable loss of farmland and forest land from 1992–2018. The elasticity of ESV in response to changes in LULC shows that 1% of land transition may have caused average changes of 0.28%, 0.34%, and 0.50% during the periods of 1992–2001, 2001–2009, and 2009–2018, respectively. This study provides important information useful for land resource management and for developing strategies to address the reduction of ESV.


2018 ◽  
Vol 2 (2) ◽  
pp. 195
Author(s):  
Alfin Murtadho ◽  
Siti Wulandari ◽  
Muhammad Wahid ◽  
Ernan Rustiadi

<p class="ISI-Paragraf">Jabodetabek and Bandung Raya metropolitan region experienced an urban expansion phenomenon that caused the two metropolitan regions to become increasingly connected by a corridor and form a mega-urban region caused by the conurbation process. Purwakarta regency is one of the regions in Jakarta-Bandung corridor that experienced the impact of Jakarta-Bandung conurbation process. This study aims to analyze the level of regional development, to analyze land cover change that occurred, and to predict Purwakarta Regency land use/land cover in 2030. Regional development analysis is done by using the Scalogram method based on Potential Village data of year 2003 and 2014. Land cover change analysis is done through spatial analysis by overlaying land cover Landsat Satellite Image of year 2000 and 2015. Land use/land cover prediction in 2030 is conducted through spatial modelling of Cellular Automata Markov method. Purwakarta Regency experienced an increase in regional development within the period of 11 years (2003 to 2014), which is marked by a decrease in the percentage of the number of villages that are in hierarchy III and increase in the percentage of the number of villages that are in hierarchy II and I. In general, within 15 years (2000 to 2015) Purwakarta Regency has increasing number of built-up area and mixed gardens, meanwhile dry land, forest, paddy field, and water bodies tend to decrease. The results of CA Markov analysis show that the built-up area is predicted to continue to increase from 2000 to 2030, meanwhile paddy fields and water bodies will continue to decrease.</p>


Sign in / Sign up

Export Citation Format

Share Document