scholarly journals Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018

2018 ◽  
Vol 10 (10) ◽  
pp. 3580 ◽  
Author(s):  
Xiaojuan Lin ◽  
Min Xu ◽  
Chunxiang Cao ◽  
Ramesh P. Singh ◽  
Wei Chen ◽  
...  

Due to urban expansion, economic development, and rapid population growth, land use/land cover (LULC) is changing in major cities around the globe. Quantitative analysis of LULC change is important for studying the corresponding impact on the ecosystem service value (ESV) that helps in decision-making and ecosystem conservation. Based on LULC data retrieved from remote-sensing interpretation, we computed the changes of ESV associated with the LULC dynamics using the benefits transfer method and geographic information system (GIS) technologies during the period of 1992–2018 following self-modified coefficients which were corrected by net primary productivity (NPP). This improved approach aimed to establish a regional value coefficients table for facilitating the reliable evaluation of ESV. The main objective of this research was to clarify the trend and spatial patterns of LULC changes and their influence on ecosystem service values and functions. Our results show a continuous reduction in total ESV from United States (US) $1476.25 million in 1992, to US $1410.17, $1335.10, and $1190.56 million in 2001, 2009, and 2018, respectively; such changes are attributed to a notable loss of farmland and forest land from 1992–2018. The elasticity of ESV in response to changes in LULC shows that 1% of land transition may have caused average changes of 0.28%, 0.34%, and 0.50% during the periods of 1992–2001, 2001–2009, and 2009–2018, respectively. This study provides important information useful for land resource management and for developing strategies to address the reduction of ESV.

2021 ◽  
Vol 13 (2) ◽  
pp. 827
Author(s):  
Yanru Wang ◽  
Xiaojuan Zhang ◽  
Peihao Peng

Monitoring the spatio-temporal variation of the land-use/land cover change (LULC) and ecosystem service value (ESV) changes will help achieve regional sustainable development and management. Derong County is a part of the Hengduan Mountains area, the most crucial ecological functional area in China, and LULC has changed tremendously in the past 30 years. However, the effects of LULC changes on ecosystem services is not well understood. Based on 1992, 1995, 2005, 2013, and 2018 remote sensing images, we used visual interpretation to obtain LULC data and used global value coefficients and modified local value coefficients to assess the spatial-temporal changes of ESV and LULC from 1992 to 2018. The results showed that: (1) From 1992 to 2018, shrubland and grassland decreased, while built-up land, snow, forestland, water body, and cropland area increased. (2) The ESV with an overall decrease of 0.25 × 108 yuan, ecological projects have played a positive role in improving ESV. In contrast, the main decrease factor of ESV was the increase in agricultural economic development and urban expansion from 1992 to 2018. (3) The ESV spatial distribution indicated the value density of ESV was on the decline, and with the greatest deterioration in Dianyagong. The highest density of ESV area is distributed in Waka, and the lowest density of ESV area is distributed in Bari. This research points out the important role of Derong County in the regional life support system and provides a scientific reference for the sustainable management of dry-hot valley regions’ land resources and ecosystem services.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


2010 ◽  
Vol 1 (2) ◽  
pp. 55-70 ◽  
Author(s):  
Hyun Joong Kim

Rapidly growing urban areas tend to reveal distinctive spatial and temporal variations of land use/land cover in a locally urbanized environment. In this article, the author analyzes urban growth phenomena at a local scale by employing Geographic Information Systems, remotely sensed image data from 1984, 1994, and 2004, and landscape shape index. Since spatial patterns of land use/land cover changes in small urban areas are not fully examined by the current GIS-based modeling studies or simulation applications, the major objective of this research is to identify and examine the spatial and temporal dynamics of land use changes of urban growth at a local scale. Analytical results demonstrate that sizes, locations, and shapes of new developments are spatio-temporally associated with their landscape variations and major transportation arteries. The key findings from this study contribute to GIS-based urban growth modeling studies and urban planning practices for local communities.


Author(s):  
Negasi Solomon ◽  
Alcade C. Segnon ◽  
Emiru Birhane

Despite their importance as sources of ecosystem services supporting the livelihoods of millions of people, forest ecosystems have been changing into other land use systems over the past decades across the world. While forest cover change dynamics have been widely documented in various ecological systems, how these changes affect ecosystem service values has received limited attention. In this study we assessed the impact of land-use/land-cover dynamics on ecosystem service values in dry Afromontane forest in Northern Ethiopia. We estimated ecosystem service values and their changes based on the benefit transfer method using land cover data of the years 1985, 2000, and 2016 with their corresponding locally valid value coefficients and from the Ecosystem service valuation database. The total ecosystem service values of the whole study area were about USD 16.6, 19.0, and 18.1 million in 1985, 2000, and 2016, respectively. The analyses indicated an increase in ecosystem service values from 1985 to 2000 and a decrease in ecosystem service values from 2000 to 2016. Similarly, the contribution of specific ecosystem services increased in the first study period and decreased in the second study period. The findings highlight how forest cover dynamics can be translated into changes in ecosystem service values in dry Afromontane forest ecosystems in Northern Ethiopia and showed how specific ecosystem services contributed to the observed trends. The findings also illustrated the temporal heterogeneity in the impacts of land-use/land-cover dynamics on values of ecosystem services. The findings can serve as crucial inputs for policy and strategy formulations for the sustainable use and management of forest resources and can also guide the allocation of limited resources among competing demands to safeguard the ecosystems that offer the best-valued services.


2019 ◽  
Author(s):  
Jiangyue Li ◽  
Hongxing Chen ◽  
Chi Zhang ◽  
Tao Pan

Acute farmland expansion and rapid urbanization in Central Asia have accelerated land use/land cover changes, which has significant effect onecosystemservice. However, the spatio-temporal changes in ecosystem service values in Central Asia are not well understood. Here, based on land use products with 300-m resolution for the years of 1995, 2005 and 2015 and transfer methodology, we predicted LUCC for 2025 and 2035 using CA-Markov, assessed changes in ecosystem service value in response to LUCC dynamics, and explored the elasticity for the response of ESV to LULC changes. We found significant expansions of cropland and urban and shrinking of water bodies and bare land during 1995-2035. Overall ESVs had an increasing trend from 1995-2035, which was mainly due to the increasing cropland and construction land. The combined valueofecosystemservices of cropland, grassland, water bodies accounted for over 90% of the total ESVs. However, LULC analysis showed that the area of water body reduced by 21.80% from 1995 to 2015 and continued to decrease by 21.14% from 2015 to 2035, indicating that approximately 63.37 billion US$ of ESVs lost in Central Asia. Biodiversity, food production and water regulation were major service functions, accounting for 80.52% of the total ESVs . Our results demonstrated that theeffective land-usepolicies should be made to control farmland expansion and protect water bodies, grassland and forestland for better sustainable ecosystem services.


2020 ◽  
Vol 52 (3) ◽  
pp. 306
Author(s):  
Murtala Dangulla ◽  
Latifah Abd Manaf ◽  
Firuz Ramli Mohammad

Urbanization is currently one of the most pressing environmental issues which cuts across all countries at unprecedented rates and intensities, with far reaching consequences on ecosystems, biodiversity and human wellbeing. This paper assessed urban expansion and land use/land cover changes in Sokoto metropolis, North-western Nigeria using Remote Sensing and GIS. Landsat images of 1990, 1999 and 2015 were processed for LULC classification and change detection using the Maximum Likelihood Classification, Post Classification Comparison techniques and the Land Change Modeler. The classification revealed five broad land cover classes which include Built-up Area, Farmland, Green Area, Open Space and Wetland/Water. The Built-up and Green areas continuously increased while Farmland and Open space decreased throughout the study period. The metropolis expanded radially at a faster rate between 1999 and 2015 with the highest rate of increase (1890.5ha per annum) recorded in the Built-up Area. This implies a doubling time of approximately 30 years at the expense of Farmland and Open space which may be completely exhausted in 40 and 29 years respectively. Infrastructural provision should thus align with the rate and direction of growth and where the Green Area is converted, replacement should be made to ensure continued supply and stability of the numerous ecosystem services green areas provide.


2018 ◽  
Vol 2 (2) ◽  
pp. 195
Author(s):  
Alfin Murtadho ◽  
Siti Wulandari ◽  
Muhammad Wahid ◽  
Ernan Rustiadi

<p class="ISI-Paragraf">Jabodetabek and Bandung Raya metropolitan region experienced an urban expansion phenomenon that caused the two metropolitan regions to become increasingly connected by a corridor and form a mega-urban region caused by the conurbation process. Purwakarta regency is one of the regions in Jakarta-Bandung corridor that experienced the impact of Jakarta-Bandung conurbation process. This study aims to analyze the level of regional development, to analyze land cover change that occurred, and to predict Purwakarta Regency land use/land cover in 2030. Regional development analysis is done by using the Scalogram method based on Potential Village data of year 2003 and 2014. Land cover change analysis is done through spatial analysis by overlaying land cover Landsat Satellite Image of year 2000 and 2015. Land use/land cover prediction in 2030 is conducted through spatial modelling of Cellular Automata Markov method. Purwakarta Regency experienced an increase in regional development within the period of 11 years (2003 to 2014), which is marked by a decrease in the percentage of the number of villages that are in hierarchy III and increase in the percentage of the number of villages that are in hierarchy II and I. In general, within 15 years (2000 to 2015) Purwakarta Regency has increasing number of built-up area and mixed gardens, meanwhile dry land, forest, paddy field, and water bodies tend to decrease. The results of CA Markov analysis show that the built-up area is predicted to continue to increase from 2000 to 2030, meanwhile paddy fields and water bodies will continue to decrease.</p>


Sign in / Sign up

Export Citation Format

Share Document