scholarly journals Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries

2021 ◽  
Vol 13 (3) ◽  
pp. 1040
Author(s):  
Edis Glogic ◽  
Guido Sonnemann ◽  
Steven B. Young

The application of circularity strategies to improve resource use and recovery should be considered with their potential impacts on the environment. Their effectiveness could be evaluated by combining the material circularity indicator (MCI) and life cycle assessment (LCA) methods. Environmental trade-offs may be underestimated for some strategies given that the loss of material quality with recycling has not been captured within the methodological framework of MCI. The current study demonstrates how significantly this limitation may influence the trade-offs in a case study. The methods are applied to several scenarios for the circularity improvement of alkaline batteries. The joint interpretation of MCI and LCA scores is carried out using waterfall charts and normalized indicator scores. Results suggest that improving circularity generally reduces environmental impacts, although there is large variability among two sets of values. For example, an increase of MCI score by 14% for two recycling scenarios translates to a small reduction of impacts in one case (0.06–1.64%) and a large reduction in another (9.84–56.82%). Observations from the case study are used to discuss the design and scope of MCI use and its combining with LCA. Lastly, we draw on the opportunities of the new comparative approach.

2021 ◽  
Vol 13 (21) ◽  
pp. 11682
Author(s):  
Martin Nwodo ◽  
Chimay Anumba

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.


Author(s):  
Serenella Sala ◽  
Andrea Martino Amadei ◽  
Antoine Beylot ◽  
Fulvio Ardente

Abstract Purpose Life cycle thinking (LCT) and life cycle assessment (LCA) are increasingly considered pivotal concept and method for supporting sustainable transitions. LCA plays a relevant role in decision support, for the ambition of a holistic coverage of environmental dimensions and for the identification of hotspots, possible trade-offs, and burden shifting among life cycle stages or impact categories. These features are also relevant when the decision support is needed in policy domain. With a focus on EU policies, the present study explores the evolution and implementation of life cycle concepts and approaches over three decades. Methods Adopting an historical perspective, a review of current European Union (EU) legal acts and communications explicitly mentioning LCT, LCA, life cycle costing (LCC), and environmental footprint (the European Product and Organisation Environmental Footprint PEF/OEF) is performed, considering the timeframe from 1990 to 2020. The documents are categorised by year and according to their types (e.g. regulations, directives, communications) and based on the covered sectors (e.g. waste, energy, buildings). Documents for which life cycle concepts and approaches had a crucial role are identified, and a shortlist of these legal acts and communications is derived. Results and discussion Over the years, LCT and life cycle approaches have been increasingly mentioned in policy. From the Ecolabel Regulation of 1992, to the Green Deal in 2019, life cycle considerations are of particular interest in the EU. The present work analysed a total of 159 policies and 167 communications. While in some sectors (e.g. products, vehicles, and waste) life cycle concepts and approaches have been adopted with higher levels of prescriptiveness, implementation in other sectors (e.g. food and agriculture) is only at a preliminary stage. Moreover, life cycle (especially LCT) is frequently addressed and cited only as a general concept and in a rather generic manner. Additionally, more stringent and rigorous methods (LCA, PEF/OEF) are commonly cited only in view of future policy developments, even if a more mature interest in lifecycle is evident in recent policies. Conclusion The EU has been a frontrunner in the implementation of LCT/LCA in policies. However, despite a growing trend in this implementation, the development of new stringent and mandatory requirements related to life cycle is still relatively limited. In fact, there are still issues to be solved in the interface between science and policy making (such as verification and market surveillance) to ensure a wider implementation of LCT and LCA.


2021 ◽  
Vol 122 ◽  
pp. 107319
Author(s):  
Wei Chen ◽  
Jinglan Hong ◽  
Chengxin Wang ◽  
Lu Sun ◽  
Tianzuo Zhang ◽  
...  

2020 ◽  
Vol 261 ◽  
pp. 121220 ◽  
Author(s):  
Zi Xiang Keng ◽  
Siewhui Chong ◽  
Chee Guan Ng ◽  
Nur Izzati Ridzuan ◽  
Svenja Hanson ◽  
...  

2021 ◽  
Vol 167 ◽  
pp. 105318
Author(s):  
Giovanna Croxatto Vega ◽  
Joshua Sohn ◽  
Juliën Voogt ◽  
Morten Birkved ◽  
Stig Irving Olsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document