scholarly journals Sustainable Urban Drainage Systems in Spain: Analysis of the Research on SUDS Based on Climatology

2021 ◽  
Vol 13 (13) ◽  
pp. 7258
Author(s):  
Ana Isabel Abellán García ◽  
Noelia Cruz Pérez ◽  
Juan C. Santamarta

Sustainable urban drainage systems (SUDS), or urban green infrastructure for stormwater control, emerged for more sustainable management of runoff in cities and provide other benefits such as urban mitigation and adaptation to climate change. Research in Spain began a little over twenty years ago, which was later than in other European countries, and it began in a heterogeneous way, both in the SUDS typology and spatially within the peninsular geography. The main objective of this work has been to know through bibliographic review the state of the art of scientific research of these systems and their relationship with the different types of climates in the country. These structures have a complex and sensitive dependence on the climate, which in the Iberian Peninsula is mostly type B and C (according to the Köppen classification). This means little water availability for the vegetation of some SUDS, which can affect the performance of the technique. To date, for this work, research has focused mainly on green roofs, their capabilities as a sustainable construction tool, and the performance of different plant species used in these systems in arid climates. The next technique with the most real cases analyzed is permeable pavements in temperate climates, proving to be effective in reducing flows and runoff volumes. Other specific investigations have focused on the economic feasibility of installing rainwater harvesting systems for the laundry and the hydraulic performance of retention systems located specifically in the northeast of the Iberian Peninsula. On the contrary, few scientific articles have appeared that describe other SUDS with vegetation such as bioretention systems or green ditches, which are characteristic of sustainable cities, on which the weather can be a very limiting factor for their development.

Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 46
Author(s):  
Guri Venvik ◽  
Floris C. Boogaard

Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 meter) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.


2010 ◽  
Vol 61 (2) ◽  
pp. 283-291 ◽  
Author(s):  
G. Burger ◽  
S. Fach ◽  
H. Kinzel ◽  
W. Rauch

Integrated urban drainage modelling is used to analyze how existing urban drainage systems respond to particular conditions. Based on these integrated models, researchers and engineers are able to e.g. estimate long-term pollution effects, optimize the behaviour of a system by comparing impacts of different measures on the desired target value or get new insights on systems interactions. Although the use of simplified conceptual models reduces the computational time significantly, searching the enormous vector space that is given by comparing different measures or that the input parameters span, leads to the fact, that computational time is still a limiting factor. Owing to the stagnation of single thread performance in computers and the rising number of cores one needs to adapt algorithms to the parallel nature of the new CPUs to fully utilize the available computing power. In this work a new developed software tool named CD3 for parallel computing in integrated urban drainage systems is introduced. From three investigated parallel strategies two showed promising results and one results in a speedup of up to 4.2 on an eight-way hyperthreaded quad core CPU and shows even for all investigated sewer systems significant run-time reductions.


2018 ◽  
Vol 10 (12) ◽  
pp. 4683 ◽  
Author(s):  
Tone Muthanna ◽  
Edvard Sivertsen ◽  
Dennis Kliewer ◽  
Lensa Jotta

Urbanization and increased precipitation volumes and intensities due to climate change add pressure to the urban drainage system, resulting in increased flooding frequencies of urban areas and deteriorating water quality in receiving waters. Infiltration practices and the use of blue green infrastructure, also called Sustainable Urban Drainage Systems (SUDS), can limit, and, in some cases, reverse the effects of urbanization. However, adequate infiltration capacity is an essential parameter for the successful implementation. In this paper, a Geographical Information System (GIS)-based hydrology analysis for SUDS placements is coupled with field measurements using Modified Phillip Dunne infiltrometer tests. The case study area is the expansion of the campus at the Norwegian University of Science and Technology (NTNU) over the next decade. Infiltration in urban soils can be highly heterogenous over short distances. When comparing measured infiltration rates with physical characteristics of the soils showed that the physical characteristics are not a good indication of the infiltration potential in urban soils with a large degree of compaction. The results showed that measuring the infiltration potential combined with flow path analysis can greatly enhance the benefits of blue green infrastructure, with an up to 70% difference in area required for SUDS solutions for managing 90% of the annual precipitation.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 34
Author(s):  
Guri Venvik ◽  
Floris C. Boogaard

Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 m) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 21 ◽  
Author(s):  
Guri Venvik ◽  
Floris C. Boogaard

Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 m) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.


2007 ◽  
Vol 2 (2) ◽  
Author(s):  
A. R. Ladson ◽  
S. Lloyd ◽  
C. J. Walsh ◽  
T. D. Fletcher ◽  
P. Horton

Monitoring the hydrochemical efficiency of urban stormwater treatment devices is not straightforward as the traditional, automated, In urban areas, efficient drainage of impervious surfaces means that polluted stormwater is frequently delivered to streams. Commonly, catchment urbanization can increase runoff frequency by a factor of 10 or more, as the effective imperviousness - the proportion of the catchment that consists of impervious surfaces drained to streams - is increased. This causes a decline in stream health. To decrease runoff frequency, effective imperviousness must be reduced. This requires urban drainage systems to be redesigned, using techniques such as infiltration and rainwater harvesting, so that stormwater from small rain events is not piped directly to streams but instead is infiltrated, reused or retained. We have developed scenarios that explore alternative urban drainage systems appropriate for a small partly urbanised catchment in Melbourne’s east. These scenarios incorporate, biofiltration basins, swales and dual purpose rainwater tanks that supply water for householders. Our results suggested that sufficient reductions in effective imperviousness and runoff frequency are possible to achieve improvements in stream health.


Sign in / Sign up

Export Citation Format

Share Document