scholarly journals Analysis of Release Model Effect in the Transport of Fission Products Simulating the FPT3 Test Using MELCOR 2.1 and MELCOR 2.2

2021 ◽  
Vol 13 (14) ◽  
pp. 7964
Author(s):  
Alain Flores y Flores ◽  
Danilo Ferretto ◽  
Tereza Marková ◽  
Guido Mazzini

The severe accident integral codes such as Methods for Estimation of Leakages and Consequences of Releases (MELCOR) are complex tools used to simulate and analyse the progression of a severe accident from the onset of the accident up to the release from the containment. For this reason, these tools are developed in order to simulate different phenomena coupling models which can simulate simultaneously the ThermoHydraulic (TH), the physics and the chemistry. In order to evaluate the performance in the prediction of those complicated phenomena, several experimental facilities were built in Europe and all around the world. One of these facilities is the PHEBUS built by Institut de Radioprotection et de Sûrete Nucléaire (IRSN) in Cadarache. The facility reproduces the severe accident phenomena for a pressurized water reactor (PWR) on a volumetric scale of 1:5000. This paper aims to continue the assessment of the MELCOR code from version 2.1 up to version 2.2 underlying the difference in the fission product transport. The assessment of severe accident is an important step to the sustainability of the nuclear energy production in this period where the old nuclear power plants are more than the new reactors. The analyses presented in this paper focuses on models assessment with attention on the influence of B4C oxidation on the release and transport of fission products. Such phenomenon is a concern point in the nuclear industry, as was highlighted during the Fukushima Daiichi accident. Simulation of the source term is a key point to evaluate the severe accident hazard along with other safety aspects.

Author(s):  
Zhimin Zhong ◽  
Jian Min ◽  
Kai Li

This paper briefly introduces the weld cladding structure, its common defects during the manufacture and operation stage and its application in pressurized water reactor nuclear power plants. Some ultrasonic testing codes or standards for nuclear power plant pressure vessel or piping, such as ASME BPVC volume V & III & XI, Germany KTA 3201.3 and 3201.4 code, France RCC-M and RSE-M code, and Russia code of light water nuclear power plants were discussed. The difference of those codes and some feed backs have been analyzed and discussed. Furthermore, these works really benefit the compiling of NB/T 20003.2-2010, Non-destructive Testing for Mechanical Components in Nuclear Island of Nuclear Power Plants-Part 2: Ultrasonic Testing, as China building more and more nuclear power plants. It was concluded that we shall pay more attention to the inspection of cladding, not only at manufacture stage but in operation outage stage. One of important work is periodically updating the inspection standard revision. It was believed that improving the cladding defects inspection reliability and effectiveness is very important to the safety of nuclear power plants operation in China and in the world.


Author(s):  
Jun Zhao ◽  
Xing Zhou ◽  
Jin Hu ◽  
Yanling Yu

The Qinshan Nuclear Power Plant phase 1 unit (QNPP-1) has a power rating of 320 MWe generated by a pressurized water reactor that was designed and constructed by China National Nuclear Corporation (CNNC). The TELEPERM XS I&C system (TXS) is to be implemented to transform analog reactor protection system (RPS) in QNPP-1. The paper mainly describes the function, structure and characteristic of RPS in QNPP-1. It focuses on the outstanding features of digital I&C, such as strong online self-test capability, the degradation of the voting logic processing, interface improvements and CPU security. There are some typical failures during the operation of reactor protection system in QNPP-1. The way to analyze and process the failures is different from analog I&C. The paper summarizes typical failures of the digital RPS in the following types: CPU failure, communication failure, power failure, Input and output (IO) failure. It discusses the cause, risk and mainly processing points of typical failure, especially CPU and communication failures of the digital RPS. It is helpful for the maintenance of the system. The paper covers measures to improve the reliability of related components which has been put forward effective in Digital reactor protection system in QNPP-1. It will be valuable in nuclear community to improve the reliability of important components of nuclear power plants.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Taeseok Kim ◽  
Wonjun Choi ◽  
Joongoo Jeon ◽  
Nam Kyung Kim ◽  
Hoichul Jung ◽  
...  

During a hypothesized severe accident, a containment building is designed to act as a final barrier to prevent release of fission products to the environment in nuclear power plants. However, in a bypass scenario of steam generator tube rupture (SGTR), radioactive nuclides can be released to environment even if the containment is not ruptured. Thus, thorough mitigation strategies are needed to prevent such unfiltered release of the radioactive nuclides during SGTR accidents. To mitigate the consequence of the SGTR accident, this study was conducted to devise a conceptual approach of installing In-Containment Relief Valve (ICRV) from steam generator (SG) to the free space in the containment building and it was simulated by MELCOR code for numerical analysis. Simulation results show that the radioactive nuclides were not released to the environment in the ICRV case. However, the containment pressure increased more than the base case, which is a disadvantage of the ICRV. To minimize the negative effects of the ICRV, the ICRV linked to Reactor Drain Tank (RDT) and cavity flooding was performed. Because the overpressurization of containment is due to heat of ex-vessel corium, only cavity flooding was effective for depressurization. The conceptual design of the ICRV is effective in mitigating the SGTR accident.


2020 ◽  
Vol 6 ◽  
pp. 2 ◽  
Author(s):  
Claire Le Gall ◽  
Fabienne Audubert ◽  
Jacques Léchelle ◽  
Yves Pontillon ◽  
Jean-Louis Hazemann

The objective of this work is to experimentally investigate the effect of the oxygen potential on the fuel and FP chemical behaviour in conditions representative of a severe accident. More specifically, the speciation of Cs, Mo and Ba is investigated. These three highly reactive FP are among the most abundant elements produced through 235U and 239Pu thermal fission and may have a significant impact on human health and environmental contamination in case of a light water reactor severe accident. This work has set out to contribute to the following three fields: providing experimental data on Pressurized Water Reactor (PWR) MOX fuel behaviour submitted to severe accident conditions and related FP speciation; going further in the understanding of FP speciation mechanisms at different stages of a severe accident; developing a method to study volatile FP behaviour, involving the investigation of SIMFuel samples manufactured at low temperature through SPS. In this paper, a focus is made on the impact of the oxygen potential towards the interaction between irradiated MOX fuels and the cladding, the interaction between Mo and Ba under oxidizing conditions and the assessment of the oxygen potential during sintering.


Author(s):  
R. Lo Frano ◽  
S. Paci ◽  
P. Darnowski ◽  
P. Mazgaj

Abstract The paper studies influence the ageing effects on the failure of a Reactor Pressure Vessel (RPV) during a severe accident with a core meltdown in a Nuclear Power Plant (NPP). The studied plant is a generic high-power Generation III Pressurized Water Reactor (PWR) developed in the frame of the EU NARSIS project. A Total Station Blackout (SBO) accident was simulated with MELCOR 2.2 severe accident integral computer code. Results of the analysis, temperatures in the lower head and pressures in the lower plenum were used as initial and boundary conditions for the Finite Element Method (FEM) simulations. Two FEM models were developed, a simple two-dimensional axis-symmetric model of the lower head to study fundamental phenomena and complex 3D model to include interactions with the RPV and reactor internals. Ageing effects of a lower head were incorporated into the FEM models to investigate its influence onto lower head response. The ageing phenomena are modelled in terms of degraded mechanical material properties as σ(T), E(T). The primary outcome of the study is the quantitative estimation of the influence of ageing process onto the timing of reactor vessel failure. Presented novel methodology and results can have an impact on future consideration about Long-Term Operation (LTO) of NPPs.


Author(s):  
Il-Seok Jeong ◽  
Gag-Hyeon Ha ◽  
Tae-Ryoung Kim

To develop a fatigue design curve of cast stainless steel CF8M used in primary piping material of nuclear power plants, low-cycle fatigue tests have been conducted by Korea Electric Power Research Institute (KEPRI). A small autoclave simulated the environment of a pressurized water reactor (PWR), 15 MPa and 315 °C. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitudes at 0.04%/s strain rate. A small autoclave of 1 liter and cylindrical solid fatigue specimens were used for the strain-controlled low cycle environmental fatigue tests to make the experiments convenient. However, it was difficult to install displacement measuring instruments at the target length of the specimens inside the autoclave. To mitigate the difficulty displacement data measured at the shoulders of the specimen were calibrated based on the data relation of the target and shoulder length of the specimen during hot air test conditions. KEPRI developed a test procedure to perform low cycle environmental fatigue tests in the small autoclave. The procedure corrects the cyclic strain hardening effect by performing additional tests in high temperature air condition. KEPRI verified that the corrected test result agreed well with that of finite element method analysis. The process of correcting environmental fatigue data would be useful for producing reliable fatigue curves using a small autoclave simulating the operating conditions of a PWR.


Author(s):  
Yuko Sakamoto ◽  
Koji Shirai ◽  
Toshiko Udagawa ◽  
Shunsuke Kondo

In Japan, nuclear power plants must be protected from tornado missiles that are prescribed by Nuclear Regular Authority (NRA). When evaluating the structural integrity of steel structures in the plant with impact analysis by numerical code, strain-based criteria are appropriate because the tornado missiles have huge impact energy and may cause large deformation of the structures. As one of the strain-based criteria, the Japan Society of Mechanical Engineers (JSME) prescribes limiting triaxial strain for severe accident of Pressurized Water Reactor (PWR) steel containment. To confirm whether or not this criterion is appropriate to the evaluation of the impact phenomena between the steel structures and the tornado missiles, a free drop impact experiment to steel plates (carbon steel and austenitic stainless steel) was carried out with heavy weights imitated on one of the tornado missiles, followed by an impact analysis of the experiment with AUTODYN code and the JSME strain-based criterion. Consequently, it was confirmed that the strain-based criterion of JSME standard was for evaluating the fracture of steel structures caused by tornado missiles.


Author(s):  
Dae-Kwang Kim ◽  
Sung-Jin Han ◽  
Hak-Joon Kim ◽  
Sung-Jin Song ◽  
Yun-hang Choung

The SMART (System-integrated Modular Advanced ReacTor) is small sized integral type pressurized water reactor designed by KAERI (Korea Atomic Energy Research Institute), Korea. But, shape of steam generator (SG) in SMART plant differs from those in operated nuclear power plants (NPPs). Especially, SG tubes in SAMRT plant is helical type with around 600 mm of innermost diameter and thickness of 2.5 mm which is thicker than general NPPs one. For providing integrity of SG tube in SMART plant, new types of ECT method are needed because eddy current testing (ECT) is one of widely adopted method for inspection of SG tubes in NPPs. Therefore, in this study, we investigate optimal conditions or parameters for detecting and evaluating of flaws in the SG tubes in SMART plant by simulation of ECT signals with various testing condition or parameter such as frequency, coil gap and etc. From the simulated ECT signals optimal eddy current test condition or parameters are proposed.


Sign in / Sign up

Export Citation Format

Share Document