scholarly journals Reduction Effect and Mechanism Analysis of Carbon Trading Policy on Carbon Emissions from Land Use

2021 ◽  
Vol 13 (17) ◽  
pp. 9558
Author(s):  
Qiuyue Xia ◽  
Lu Li ◽  
Jie Dong ◽  
Bin Zhang

The reduction of carbon emissions from land use (CELU) is critical for China to achieve carbon neutrality, which may be greatly facilitated by carbon trading policies. Previous studies of the emission reduction effects of carbon trading policies focused mostly on the reduction of carbon source emissions, and there is a lack of research from the comprehensive perspective of carbon sources and carbon sinks. Understanding the effect of carbon trading policies on emission reduction from the perspective of CELU may help to improve the evaluation system of carbon trading policies, as well as provide important implications for the construction of China’s carbon trading market in the context of global carbon neutrality. Here, based on China’s current carbon-trading pilot areas, quasi-natural experiments were conducted by using the CELU data from 2005 to 2017, the synthetic control method (SCM) and the mediation effect model, aiming to empirically study the reduction effect and mechanism of carbon trading policies on CELU. The following main findings were obtained. (1) Carbon trading policies have had a significant reduction effect on the average CELU of the pilot areas by at least four million tons per year during the study period. (2) The carbon emission reduction effect of carbon trading policies has certain regional heterogeneity. (3) Carbon trading policies reduce CELU through the intermediate effect of energy structure, whose contribution rate reaches 30.433%. (4) Carbon trading policies did not achieve the Porter effect of technological progress during the study period, and technological progress has no significant intermediate effect on the reduction of CELU by carbon trading policy. Based on the above findings, the following policy implications can be proposed. Carbon trading and carbon offset should be studied from a comprehensive perspective of land use; regional heterogeneity should be considered when promoting the carbon emission trading system nationwide; and the energy structure should be optimized continuously.

2021 ◽  
Vol 9 ◽  
Author(s):  
Yinglin Tian ◽  
Di Xie ◽  
Tiejian Li ◽  
Jiaye Li ◽  
Yu Zhang ◽  
...  

Facing irreversible and catastrophic changes on the earth, China has committed to peak the net carbon emission by 2030 and to achieve carbon neutrality by 2060. The pledge requires significant mitigation immediately and sustainably. Considering this background, some perspectives are given in this article based on the comprehensive use of natural resources. First, utilizing the STIRPAT (stochastic impacts by regression on population, affluence, and technology) model and statistical data, net carbon emissions of provinces in China are anticipated, which lays a foundation for the further “three-step” carbon neutralization route. Second, a strategy of water–temperature–radiation–land coupling use is proposed, considering 1) the carbon emission cut, which relies on comparing the energy intensity and energy structure in China with those in developed countries; 2) the carbon sink increase, which depends on the evaluation of constraints of hydrometeorological factors on ecological productivity. Finally, the necessity and possibility of carbon trading and redistribution of the natural resources are discussed to ensure that China's national net carbon emission would be reduced to zero by 2060.


2021 ◽  
Vol 13 (2) ◽  
pp. 642
Author(s):  
Shuangxi Zhou ◽  
Zhenzhen Guo ◽  
Yang Ding ◽  
Jingliang Dong ◽  
Jianming Le ◽  
...  

Buildings consume many resources and generate greenhouse gases during construction. One of the main sources of greenhouse gases is carbon emission associated with buildings. This research is based on the computing rule of carbon emission at the materialization stage. By taking the features of green construction into consideration, quantitative analysis on construction carbon emission was undertaken via Life Cycle Assessment (LCA). Making use of Vensim (a system dynamics software package), we analyzed the amount of carbon emission at the materialization stage and determined the major subsystems affecting the carbon emission, then took into comprehensive consideration the differences of each subsystem’s carbon emission under different construction technologies. Under the mechanism of carbon trade at the materialization stage, the total price of carbon trades remains unchanged, while the trading price of each subsystem is adjusted. Under these conditions, a coefficient for step-wise increases in carbon price was proposed. By establishing such a system of gradient prices, construction companies are encouraged to adopt high-efficiency emission reduction technologies. Meanwhile, the system also provides a reference for the formulation of price-based policies about buildings’ carbon trading, and accelerates the process of energy conservation and emission reduction in China and the world at large.


2021 ◽  
Vol 11 (15) ◽  
pp. 6968
Author(s):  
Hong Li ◽  
Yazhong Ye ◽  
Lanxin Lin

The integrated power and natural gas energy system (IPGES) is of great significance to promote the coordination and complementarity of multi-energy flow, and it is an important carrier to increase the proportion of wind power accommodation and achieve the goal of carbon emission reduction. In this paper, firstly, the reward and punishment ladder-type carbon trading model is constructed, and the impact of the carbon trading mechanisms on the carbon emission sources in the power system is comparatively analyzed. Secondly, in order to achieve a reasonable allocation of carbon resources in IPGES, a bi-level optimization model is established while taking into account the economics of dispatching and the requirements of carbon emission reduction. Among them, the outer layer is the optimal carbon price solution model considering carbon trading; in the inner layer, considering the power system constraints, natural gas system constraints, and coupling element operation constraints, a stochastic optimal dispatching model of IPGES based on scenario analysis is established. Scenario generation and reduction methods are used to deal with the uncertainty of wind power, and the inner model is processed as a mixed integer linear programming problem. In the MATLAB environment, program the dichotomy and call the Gurobi optimization solver to complete the interactive solution of the inner and outer models. Finally, case studies that use an integrated IEEE 39-bus power system and Belgian 20-node gas system demonstrate the effectiveness and scalability of the proposed model and optimization method.


2020 ◽  
Vol 12 (16) ◽  
pp. 6498 ◽  
Author(s):  
Fuquan Zhao ◽  
Feiqi Liu ◽  
Han Hao ◽  
Zongwei Liu

The Chinese government has made a commitment to control carbon emissions, and the deployment of renewable energy power generation is considered as an effective solution. In recent years, great effort has been exerted to support the development of renewable energy in China. While, due to fiscal pressures and changes in management policies, related subsidies are diminishing now and energy users are asked to pay for the cost. Regulations about carbon cap and renewable energy consumptions are issued to transfer the responsibility of consuming renewable energy and reducing carbon emissions to energy consumers. A national carbon trading system is set up in China and is under its growth stage. Therefore, this study lists the factors that should be considered by the energy users, analyzes the levelized cost of electricity generated by renewable energy in four cities in China, Beijing, Shanghai, Guangzhou, Wuhan, and compares the results with current carbon prices. Based on the research, under the current status, it is still more cost-efficient for enterprises to buy carbon credits than introduce renewable energies, and great differences among cities are shown due to different natural conditions. Besides, with diminishing subsidies and development of the carbon trading market, the carbon price will gradually reflect the actual value and carbon emission reduction costs will become an important part of enterprise expenditure. In the long term, enterprises should link more factors to carbon emissions, like social responsibility and brand image, instead of only the cost.


2019 ◽  
Vol 11 (3) ◽  
pp. 914 ◽  
Author(s):  
Jianguo Zhou ◽  
Yushuo Li ◽  
Xuejing Huo ◽  
Xiaolei Xu

With the official launch of China’s national unified carbon trading system (ETS) in 2017, it has played an increasingly important role in controlling the growth of carbon dioxide emissions. One of the core issues in carbon trading is the allocation of initial carbon emissions permits. Since the industry emits the largest amount of carbon dioxide in China, a study on the allocation of carbon emission permits among China’s industrial sectors is necessary to promote industry carbon abatement efficiency. In this study, industrial carbon emissions permits are allocated to 37 sub-sectors of China to reach the emission reduction target of 2030 considering the carbon marginal abatement cost, carbon abatement responsibility, carbon abatement potential, and carbon abatement capacity. A hybrid approach that integrates data envelop analysis (DEA), the analytic hierarchy process (AHP), and principal component analysis (PCA) is proposed to allocate carbon emission permits. The results of this study are as follows: First, under the constraint of carbon intensity, the carbon emission permits of the total industry in 2030 will be 8792 Mt with an average growth rate of 3.27%, which is 1.57 times higher than that in 2016. Second, the results of the carbon marginal abatement costs show that light industrial sectors and high-tech industrial sectors have a higher abatement cost, while energy-intensive heavy chemical industries have a lower abatement cost. Third, based on the allocation results, there are six industrial sub-sectors that have obtained major carbon emission permits, including the smelting and pressing of ferrous metals (S24), manufacturing of raw chemical materials and chemical products (S18), manufacturing of non-metallic mineral products (S23), smelting and pressing of non-ferrous metals (S25), production and supply of electric power and heat power (S35), and the processing of petroleum, coking, and processing of nuclear fuel (S19), accounting for 69.23% of the total carbon emissions permits. Furthermore, the study also classifies 37 industrial sectors to explore the emission reduction paths, and proposes corresponding policy recommendations for different categories.


Sign in / Sign up

Export Citation Format

Share Document