scholarly journals Identifying Spatial Driving Factors of Energy and Water Consumption in the Context of Urban Transformation

2021 ◽  
Vol 13 (19) ◽  
pp. 10503
Author(s):  
I-Chun Chen ◽  
Kuang-Ly Cheng ◽  
Hwong-Wen Ma ◽  
Cathy C.W. Hung

Urban energy and water consumption varies substantially across spatial and temporal scales, which can be attributed to changes of socio-economic variables, especially for a city undergoing urban transformation. Understanding these variations in variables related to resource consumptions would be beneficial to regional resource utilization planning and policy implementation. A geographically weighted regression method with modified procedures was used to explore and visualize the relationships between socio-economic factors and spatial non-stationarity of urban resource consumption to enhance the reliability of predicted results, taking Taichung city with 29 districts as an example. The results indicate that there is a strong positive correlation between socio-economic context and domestic resource consumption, but that there are relatively weak correlations for industrial and agricultural resource consumption. In 2015, domestic water and energy consumption was driven by the number of enterprises followed by population and average income level (depending on the target districts and sectors). Domestic resource consumption is projected to increase by approximately 84% between 2015 and 2050. Again, the number of enterprises outperforms other factors to be the dominant variable responsible for the increase in resource consumption. Spatial regression analysis of non-stationarity resource consumption and its associated variables offers useful information that is helpful for targeting hotspots of dominant resource consumers and intervention measures.

Author(s):  
Daniel Schumann ◽  
Corinna Kroner ◽  
Bülent Unsal ◽  
Søren Haack ◽  
Johan Bunde Kondrup ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246785
Author(s):  
Lorenzo Donadio ◽  
Rossano Schifanella ◽  
Claudia R. Binder ◽  
Emanuele Massaro

The availability of reliable socioeconomic data is critical for the design of urban policies and the implementation of location-based services; however, often, their temporal and geographical coverage remain scarce. We explore the potential for insurance customers data to predict socioeconomic indicators of Swiss municipalities. First, we define a features space by aggregating at city-level individual customer data along several behavioral and user profile dimensions. Second, we collect official statistics shared by the Swiss authorities on a wide spectrum of categories: Population, Transportation, Work, Space and Territory, Housing, and Economy. Third, we adopt two spatial regression models exploring both global and local geographical dependencies to investigate their predictability. Results show consistently a correlation between insurance customer characteristics and official socioeconomic indexes. Performance fluctuates depending on the category, with values of R2 > 0.6 for several target variables using a 5-fold cross validation. As a case study, we focus on predicting the percentage of the population using public transportation and we discuss the implications on a regional scope. We believe that this methodology can support official statistical offices and it could open up new opportunities for the characterization of socioeconomic traits at highly-granular spatial and temporal scales.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2620 ◽  
Author(s):  
Wenge Zhang ◽  
Xianzeng Du ◽  
Anqi Huang ◽  
Huijuan Yin

Proper water use requires its monitoring and evaluation. An indexes system of overall water use efficiency is constructed here that covers water consumption per 10,000 yuan GDP, the coefficient of effective utilization of irrigation water, the water consumption per 10,000 yuan of industrial value added, domestic water consumption per capita of residents, and the proportion of water function zone in key rivers and lakes complying with water-quality standards and is applied to 31 provinces in China. Efficiency is first evaluated by a projection pursuit cluster model. Multidimensional efficiency data are transformed into a low-dimensional subspace, and the accelerating genetic algorithm then optimizes the projection direction, which determines the overall efficiency index. The index reveals great variety in regional water use, with Tianjin, Beijing, Hebei, and Shandong showing highest efficiency. Shanxi, Liaoning, Shanghai, Zhejiang, Henan, Shanxi, and Gansu also use water with high efficiency. Medium efficiency occurs in Inner Mongolia, Jilin, Heilongjiang, Jiangsu, Hainan, Qinghai, Ningxia, and Low efficiency is found for Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, and Xinjiang. Tibet is the least efficient. The optimal projection direction is a* = (0.3533, 0.7014, 0.4538, 0.3315, 0.1217), and the degree of influence of agricultural irrigation efficiency, water consumption per industrial profit, water used per gross domestic product (GDP), domestic water consumption per capita of residents, and environmental water quality on the result has decreased in turn. This may aid decision making to improve overall water use efficiency across China.


Sign in / Sign up

Export Citation Format

Share Document