scholarly journals Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City

2021 ◽  
Vol 13 (22) ◽  
pp. 12487
Author(s):  
Mayara S. Siverio Lima ◽  
Mohsen Hajibabaei ◽  
Sina Hesarkazzazi ◽  
Robert Sitzenfrei ◽  
Alexander Buttgereit ◽  
...  

This study used a cradle-to-cradle Life Cycle Assessment (LCA) approach to evaluate the environmental potentials of urban pavements. For this purpose, the urban road network of the City of Münster (Germany) was selected as the case study, and comprehensive data for several phases were collected. The entire road network is composed of flexible pavements designed according to specific traffic loads and consists of main roads (MRs), main access roads (MARs), and residential roads (RSDTs). Asphalt materials, pavement structures, and maintenance strategies are predefined for each type of road and are referred to as “traditional” herein. Some pavement structures have two possible maintenance strategies, denoted by “A” and “B”, with distinguished periods of intervention. To evaluate the impact of using recycled materials, we considered alternative pavement structures composed of asphalt materials containing a greater amount of reclaimed asphalt pavement (RAP). The study was carried out considering analysis periods of 20, 50, 80, and 100 years and using two indicators: non-renewable cumulative energy demand (nr-CED) and global warming potential (GWP). The results show that the use of higher amounts of RAP can mitigate negative environmental impacts and that certain structures and maintenance strategies potentially enhance the environmental performance of road pavements. This article suggests initiatives that will facilitate the decision-making process of city administrators to achieve more sustainable road pavement constructions and provides an essential dataset inventory to support future environmental assessment studies, particularly for European cities.

2020 ◽  
Vol 12 (15) ◽  
pp. 6113
Author(s):  
Mayara S. Siverio Lima ◽  
Mohsen Hajibabaei ◽  
Sina Hesarkazzazi ◽  
Robert Sitzenfrei ◽  
Alexander Buttgereit ◽  
...  

Life cycle assessment (LCA) tools have been used by governments and city administrators to support the decision-making process toward creating a more sustainable society. Since LCA is strongly influenced by local conditions and may vary according to various factors, several institutions have launched cooperation projects to achieve sustainable development goals. In this study, we assessed the potential environmental enhancements within the production of road materials applied to the road network of Münster, Germany. We also compared traditional pavement structures used in Münster and alternative options containing asphalt mixtures with larger amounts of reclaimed asphalt pavement (RAP). Although the case study was conducted in Münster, the data collected and the results obtained in this study can be used for comparison purposes in other investigations. In the analysis, we considered all environmental impacts from raw material extraction to the finished product at the asphalt plant. Two environmental indicators were used: non-renewable cumulative energy demand (nr-CED) and global warming potential (GWP). The results show that using RAP increases the consumption of energy but potentially decreases the environmental impacts in terms of the nr-CED and GWP associated with the production of asphalt materials.


2021 ◽  
Vol 13 (6) ◽  
pp. 3380
Author(s):  
Marta Gangolells ◽  
Miquel Casals ◽  
Marcel Macarulla ◽  
Núria Forcada

This paper analyzes the impact of an innovative approach based on gamification to promote reduced energy consumption in social housing. The game was developed and validated under the auspices of the EU-funded project EnerGAware-Energy Game for Awareness of energy efficiency in social housing communities in an affordable housing pilot located in Plymouth (United Kingdom). The results showed that the future exploitation of the game holds important energy- and emissions-saving potential. Assuming that the game is distributed freely by European energy providers to their domestic end-users, the game was found to be able to save more than 48.9 secondary terawatt-hours per year (TWhs) and 18.8 million tons of CO2e annually, contributing up to around 8% to the target set for the European buildings sector to keep global warming under 2 °C. The results also showed that the game is highly feasible from the energy point of view, even when we consider the energy consumed upstream, due to its low cumulative energy demand and its potential for household energy reduction. The results of this research provide helpful information for private and public stakeholders, as they contribute to determining the sustainability of promoting energy saving through gaming.


Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 9 ◽  
Author(s):  
Shahana Janjua ◽  
Prabir Sarker ◽  
Wahidul Biswas

The environmental performance assessment of the building and construction sector has been in discussion due to the increasing demand of facilities and its impact on the environment. The life cycle studies carried out over the last decade have mostly used an approximate life span of a building without considering the building component replacement requirements and their service life. This limitation results in unreliable outcomes and a huge volume of materials going to landfill. This study was performed to develop a relationship between the service life of a building and building components, and their impact on environmental performance. Twelve building combinations were modelled by considering two types of roof frames, two types of wall and three types of footings. A reference building of a 50-year service life was used in comparisons. Firstly, the service life of the building and building components and the replacement intervals of building components during active service life were estimated. The environmental life cycle assessment (ELCA) was carried out for all the buildings and results are presented on a yearly basis in order to study the impact of service life. The region-specific impact categories of cumulative energy demand, greenhouse gas emissions, water consumption and land use are used to assess the environmental performance of buildings. The analysis shows that the environmental performance of buildings is affected by the service life of a building and the replacement intervals of building components.


2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


2016 ◽  
Vol 11 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Maria de Lurdes Antunes ◽  
Vânia Marecos ◽  
José Neves ◽  
João Morgado

The construction and maintenance of a road network involve the expenditure of large budgets. In order to optimize the investments in road infrastructures, designers and decision makers should have the instruments to make the most suitable decision of paving solutions for each particular situation. The life-cycle assessment is an important tool of different road pavement solutions with this purpose. This paper presents a study concerning the life-cycle cost analysis of different flexible and semi-rigid paving alternatives, with the objective to contribute for a better support in the decision process when designing new pavement structures. The analysis was carried out using data on construction costs of certain typical pavement structures and taking into consideration appropriate performance models for each type of structure being selected. The models were calibrated using results from long term performance studies across Europe and the maintenance strategies considered have taken into account the current practice also found in the European context. Besides the life-cycle administration costs, the proposed methodology also deals with user and environmental costs through its inclusion in the decision process using multi-criteria analysis. It was demonstrated that this methodology could be a simple and useful tool in order to achieve the most adequate paving solutions of a road network, in terms of construction and maintenance activities, based simultaneously on technical, economic and environmental criteria.


Author(s):  
Alberto Tama Franco

Wind technology is considered to be among the most promising types of renewable energy sources, and due to high oil prices and growing concerns about climate change and energy security, it has been the subject of extensive considerations in recent years, including questions related to the relative sustainability of electricity production when the manufacturing, assembly, transportation and dismantling processes of these facilities are taken into account. The present article evaluates the environmental impacts, carbon emissions and water consumption, derived from the production of electric energy of the Villonaco wind farm, located in Loja-Ecuador, during its entire life cycle, using the Life Cycle Analysis method. Finally, it is concluded that wind energy has greater environmental advantages, since it has lower values of carbon and water footprints than other energy sources. Additionally, with the techniques Cumulative Energy Demand and Energy Return on Investment, sustainability in the production of electricity from wind power in Ecuador is demonstrated; and, that due to issues of vulnerability to climate change, the diversification of its energy mix is essential considering the inclusion of non-conventional renewable sources such as solar or wind, this being the only way to reduce both the carbon footprint and the water supply power.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 252 ◽  
Author(s):  
Vincenzo Muteri ◽  
Maurizio Cellura ◽  
Domenico Curto ◽  
Vincenzo Franzitta ◽  
Sonia Longo ◽  
...  

The photovoltaic (PV) sector has undergone both major expansion and evolution over the last decades, and currently, the technologies already marketed or still in the laboratory/research phase are numerous and very different. Likewise, in order to assess the energy and environmental impacts of these devices, life cycle assessment (LCA) studies related to these systems are always increasing. The objective of this paper is to summarize and update the current literature of LCA applied to different types of grid-connected PV, as well as to critically analyze the results related to energy and environmental impacts generated during the life cycle of PV technologies, from 1st generation (traditional silicon based) up to the third generation (innovative non-silicon based). Most of the results regarded energy indices like energy payback time, cumulative energy demand, and primary energy demand, while environmental indices were variable based on different scopes and impact assessment methods. Moreover, the review work allowed to highlight and compare key parameters (PV type and system, geographical location, efficiency), methodological insights (functional unit, system boundaries, etc.), and energy/environmental hotspots of 39 LCA studies relating to different PV systems, in order to underline the importance of these aspects, and to provide information and a basis of comparison for future analyses.


Sign in / Sign up

Export Citation Format

Share Document