scholarly journals Incorporation of Microgrid Technology Solutions to Reduce Power Loss in a Distribution Network with Elimination of Inefficient Power Conversion Strategies

2021 ◽  
Vol 13 (24) ◽  
pp. 13882
Author(s):  
Mageswaran Rengasamy ◽  
Sivasankar Gangatharan ◽  
Rajvikram Madurai Elavarasan ◽  
Lucian Mihet-Popa

The increase in energy-efficient DC appliances and electronic gadgets has led to an upheaval in the usage of AC–DC power convertors; hence, power loss in converter devices is cumulatively increasing. Evolving microgrid technology has also become deeply integrated with the conversion process due to increased power converters in its infrastructure, significantly worsening the power loss situation. One of the practical solutions to this disturbance is to reduce conversion losses in domestic distribution systems through the optimal deployment of the battery storage system and solar PV power using microgrid technology. In this paper, a novel energy management system is developed that uses a new control algorithm, termed Inefficient Power Conversion Elimination Algorithm (IPCEA). The proposed algorithm compares the Net Transferable Power (NTP) available on the DC side with the loss rate across the converter. The converter is switched off (or disconnected from the grid and load) if the NTP is less than 20% of the converter rating to avoid low-efficiency power conversion. The solar PV system is connected to the DC bus to supply the DC loads while the AC loads are supplied from the AC source (utility power). An auxiliary battery pack is integrated to the DC side to feed DC loads during the absence of solar energy. A battery energy storage system (BESS) is deployed to manage energy distribution effectively. The power distribution is managed using a centralized microgrid controller, and the load demand is met accordingly. Thereby, the power generated by the solar PV can be utilized effectively. Microgrid technology’s effectiveness is emphasized by comparative analysis, and the achievements are discussed in detail and highlighted using a prototype model.

Implementation of modified AHP coupled with MOORA methods for modeling and optimization of solar photovoltaic (PV)-pumped hydro energy storage (PHS) system parameter is presented in this chapter. Work optimized the parameters, namely unmet energy (UE), size of PV-panel, and volume of upper reservoir (UR), to get economic cost of energy (COE) and excess energy (EE). The trail no.11 produces the highest assessment values compared to the other trails and provides EE as 16.19% and COE as 0.59 $/kWh for PV-PHS. ANOVA and parametric study is also performed to determine the significance of the parameters for PV-PHS performance. Investigation results indicate the effectiveness and significant potential for modeling and optimization of PV-PHS system and other solar energy systems.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2137
Author(s):  
Mariz B. Arias ◽  
Sungwoo Bae

This paper provides models for managing and investigating the power flow of a grid-connected solar photovoltaic (PV) system with an energy storage system (ESS) supplying the residential load. This paper presents a combination of models in forecasting solar PV power, forecasting load power, and determining battery capacity of the ESS, to improve the overall quality of the power flow management of a grid-connected solar PV system. Big data tools were used to formulate the solar PV power forecasting model and load power forecasting model, in which real historical solar electricity data of actual solar homes in Australia were used to improve the quality of the forecasting models. In addition, the time-of-use electricity pricing was also considered in managing the power flow, to provide the minimum cost of electricity from the grid to the residential load. The output of this model presents the power flow profiles, including the solar PV power, battery power, grid power, and load power of weekend and weekday in a summer season. The battery state-of-charge of the ESS was also presented. Therefore, this model may help power system engineers to investigate the power flow of each system of a grid-connected solar PV system and help in the management decision for the improvement of the overall quality of the power management of the system.


Energy storage system plays a crucial role in providing stabilization and improving power quality in isolated microgrid, especially in renewable energy based microgrid systems. Among the renewable sources, Photovoltaic (PV) based power systems are famous and increasing day by day due to its merits and advantages. Three phase fault are common in microgrid and leads to unsteady condition in the PV output power. When there is a fault in solar PV system, the photovoltaic power output decreases and results in abnormal voltage drop in the system. Efficiency and reliability of PV system is also a major issue. To overcome the issues occur due to fault in isolated PV system, it is to have Fault Ride through (FRT) capabilities. When failure occurs in PV system, FRT capability allows the system to maintain stability. FRT also allows the PV system to survive the system during the condition of fault on the system. Moreover, energy storage systems plays major role in the PV based systems. A Super Conducting Magnetic Energy Storage system (SMES)is proposed in this paper which is for providing power stabilization in isolated microgrid under fault condition. SMES can provide the real and reactive power according to the requirements of PV based power system. The proposed SMES can be a good solution for minimizing the effect on the system due to fault condition in PV system. Using MATLAB/SIMULINK, isolated PV with SMES was simulated and analysed for its performance with and without fault condition. This proposed theory is proven by an extensive simulation results.


Author(s):  
Yashwant Joshi, Et. al.

A stand-alone renewable based microgrid (MG) performance with a hybrid energy storage system has been examined in this work. Stand-alone MG system mainly consists of a solar photovoltaic (PV) and permanent magnet synchronous generator (PMSG) based wind system. The hybrid energy storage system is based on Ni-Metal- Hydride (NiMH) battery and a supercapacitor (SC).  The paper's primary goal is to propose an artificial neural network (ANN) based control strategy for charging/discharging control of Ni-Metal- Hydride battery & supercapacitor. The proposed maximum power tracking techniques (MPPT) include perturb and observe (P& O) algorithm for solar PV system while optimum torque (OT) MPPT for PMSG based wind turbine. The ANN-based control mechanism can maintain the DC bus voltage constant and trigger the supercapacitor to limit the battery current when the battery charging/ discharging current reached its threshold value. The proposed model responds quickly to intermittent nature PV-wind power generation or load power variation.


Author(s):  
Virendra Sharma ◽  
Piyush Kumar Choubey ◽  
Amit Kumar ◽  
Lata Gidwani

<p>This paper presents an approach for optimal generation capacity mix to fulfill future power demand using a micro-grid model which is operated in both the on-grid and off-grid modes. This is achieved using the solar photovoltaic (PV) system, fuel-cell, and battery energy storage system (BESS) with and without the grid-connected mode. Different control approaches and optimal size of the generators are presented. Proposed micro grid with solar PV system, solid oxide fuel cell (SOFC) and back scattered electron detector (BESD) is tested for different operational scenarios of loads. Comparative index of performance (CIP) is introduced to indicate effectiveness of the micro-grid operations in the off-grid mode. This is based on difference in the total harmonic distortions (THD) in both the on-grid and off-grid modes. This is established that CIP indicates that the micro-grid works efficiently in the both the on-grid and off- grid modes during the simulated events of the switching ON/OFF the loads at different test conditions. The optimal generation mix successfully met the load demand with and without grid having conventional generatio.</p>


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3683
Author(s):  
Yerasimos Yerasimou ◽  
Marios Kynigos ◽  
Venizelos Efthymiou ◽  
George E. Georghiou

Distributed generation (DG) systems are growing in number, diversifying in driving technologies and providing substantial energy quantities in covering the energy needs of the interconnected system in an optimal way. This evolution of technologies is a response to the needs of the energy transition to a low carbon economy. A nanogrid is dependent on local resources through appropriate DG, confined within the boundaries of an energy domain not exceeding 100 kW of power. It can be a single building that is equipped with a local electricity generation to fulfil the building’s load consumption requirements, it is electrically interconnected with the external power system and it can optionally be equipped with a storage system. It is, however, mandatory that a nanogrid is equipped with a controller for optimisation of the production/consumption curves. This study presents design consideretions for nanogrids and the design of a nanogrid system consisting of a 40 kWp photovoltaic (PV) system and a 50 kWh battery energy storage system (BESS) managed via a central converter able to perform demand-side management (DSM). The implementation of the nanogrid aims at reducing the CO2 footprint of the confined domain and increase its self-sufficiency.


Sign in / Sign up

Export Citation Format

Share Document