scholarly journals m-Polar Fuzzy Soft Weighted Aggregation Operators and Their Applications in Group Decision-Making

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 636 ◽  
Author(s):  
Azadeh Khameneh ◽  
Adem Kiliçman

Aggregation operators are important tools for solving multi-attribute group decision-making (MAGDM) problems. The main challenging issue for aggregating data in a MAGDM problem is how to develop a symmetric aggregation operator expressing the decision makers’ behavior. In the literature, there are some methods dealing with this difficulty; however, they lack an effective approach for multi-polar inputs. In this study, a new aggregation operator for m-polar fuzzy soft sets (M-pFSMWM) reflecting different agreement scenarios within a group is presented to proceed MAGDM problems in which both attributes and experts have different weights. Moreover, some desirable properties of M-pFSMWM operator, such as idempotency, monotonicity, and commutativity (symmetric), that means being invariant under any permutation of the input arguments, are studied. Further, m-polar fuzzy soft induced ordered weighted average (M-pFSIOWA) operator and m-polar fuzzy soft induced ordered weighted geometric (M-pFSIOWG) operator, which are extensions of IOWA and IOWG operators, respectively, are developed. Two algorithms are also designed based on the proposed operators to find the final solution in MAGDM problems with weighted multi-polar fuzzy soft information. Finally, the efficiency of the proposed methods is illustrated by some numerical examples. The characteristic comparison of the proposed aggregation operators shows the M-pFSMWM operator is more adaptable for solving MAGDM problems in which different cases of agreement affect the final outcome.

Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 206 ◽  
Author(s):  
Yun Jin ◽  
Hecheng Wu ◽  
Jose M. Merigó ◽  
Bo Peng

In this paper, we consider multiple attribute group decision making (MAGDM) problems in which the attribute values take the form of intuitionistic uncertain linguistic variables. Based on Hamacher operations, we developed several Hamacher aggregation operators, which generalize the arithmetic aggregation operators and geometric aggregation operators, and extend the algebraic aggregation operators and Einstein aggregation operators. A number of special cases for the two operators with respect to the parameters are discussed in detail. Also, we developed an intuitionistic uncertain linguistic generalized Hamacher hybrid weighted average operator to reflect the importance degrees of both the given intuitionistic uncertain linguistic variables and their ordered positions. Based on the generalized Hamacher aggregation operator, we propose a method for MAGDM for intuitionistic uncertain linguistic sets. Finally, a numerical example and comparative analysis with related decision making methods are provided to illustrate the practicality and feasibility of the proposed method.


2013 ◽  
Vol 404 ◽  
pp. 672-677 ◽  
Author(s):  
Jin Han Park ◽  
Jung Mi Park ◽  
Young Chel Kwun ◽  
Ja Hong Koo

The power ordered weighted average (POWA) operator and the power ordered weighted geometric (POWG) operator are the two nonlinear weighted average aggregation tools whose weighting vectors depend on their input arguments. In this paper, as a more general type of POWA and POWG operators, respectively, we develop two induced power aggregation operators called the induced POWA (IPOWA) operator and the induced POWG (IPOWG) operator, respectively, and establish various properties of these induced power aggregation operators, and then apply them, respectively, to develop an approach to multiple attribute group decision making.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1489
Author(s):  
Shahzad Faizi ◽  
Wojciech Sałabun ◽  
Nisbha Shaheen ◽  
Atiq ur Rehman ◽  
Jarosław Wątróbski

Ambiguous and uncertain facts can be handled using a hesitant 2-tuple linguistic set (H2TLS), an important expansion of the 2-tuple linguistic set. The vagueness and uncertainty of data can be grabbed by using aggregation operators. Therefore, aggregation operators play an important role in computational processes to merge the information provided by decision makers (DMs). Furthermore, the aggregation operator is a potential mechanism for merging multisource data which is synonymous with cooperative preference. The aggregation operators need to be studied and analyzed from various perspectives to represent complex choice situations more readily and capture the diverse experiences of DMs. In this manuscript, we propose some valuable operational laws for H2TLS. These new operational laws work through the individual aggregation of linguistic words and the collection of translation parameters. We introduced a hesitant 2-tuple linguistic weighted average (H2TLWA) operator to solve multi-criteria group decision-making (MCGDM) problems. We also define hesitant 2-tuple linguistic Bonferroni mean (H2TLBM) operator, hesitant 2-tuple linguistic geometric Bonferroni mean (H2TLGBM) operator, hesitant 2-tuple linguistic Heronian mean (H2TLHM) operator, and a hesitant 2-tuple linguistic geometric Heronian mean (H2TLGHM) operator based on the novel operational laws proposed in this paper. We define the aggregation operators for addition, subtraction, multiplication, division, scalar multiplication, power and complement with their respective properties. An application example and comparison analysis were examined to show the usefulness and practicality of the work.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qinrong Feng ◽  
Xiao Guo

There are many uncertain problems in practical life which need decision-making with soft sets and fuzzy soft sets. The purpose of this paper is to develop an approach to effectively solve the group decision-making problem based on fuzzy soft sets. Firstly, we present an adjustable approach to solve the decision-making problems based on fuzzy soft sets. Then, we introduce knowledge measure and divergence degree based on α-similarity relation to determine the experts’ weights. Further, we develop an effective group decision-making approach with unknown experts’ weights. Finally, sensitivity analysis about the parameters and comparison analysis with other existing methods are given.


Author(s):  
Jiu-Ying Dong ◽  
Li-Lian Lin ◽  
Feng Wang ◽  
Shu-Ping Wan

The purpose of this paper is to propose a new approach to interactive multi-attribute group decision making with triangular Atanassov's intuitionistic fuzzy numbers (TAIFNs). The contribution of this study is fivefold: (1) Minkowski distance between TAIFNs is firstly defined; (2) We define the possibility attitudinal expected values of TAIFNs and thereby present a novel risk attitudinal ranking method of TAIFNs which can sufficiently consider the risk attitude of decision maker; (3) The weighted average operator (TAIFWA) and generalized ordered weighted average (TAIFGWA) operator of TAIFNs are defined as well as the hybrid ordered weighted average (TAIFHOWA) operator; (4) To study the interaction between attributes, we further develop the generalized Choquet (TAIF-GC) integral operator and generalized hybrid Choquet (TAIF-GHC) integral operator of TAIFNs. Their desirable properties are also discussed; (5) The individual overall value of alternative is obtained by TAIF-GC operator and the collective one is derived through TAIFWA operator. Fuzzy measures of attribute subsets and expert weights are objectively derived through constructing multi-objective optimization model which is transformed into the goal programming model to solve. The system analyst selection example verifies effectiveness of the proposed approach.


2020 ◽  
Vol 30 (1) ◽  
pp. 59-70
Author(s):  
Shehu Mohammed ◽  
Akbar Azam

The notion of soft set theory was initiated as a general mathematical tool for handling ambiguities. Decision making is viewed as a cognitive-based human activity for selecting the best alternative. In the present time, decision making techniques based on fuzzy soft sets have gained enormous attentions. On this development, this paper proposes a new algorithm for decision making in fuzzy soft set environment by hybridizing some existing techniques. The first novelty is the idea of absolute scores. The second concerns the concept of priority table in group decision making problems. The advantages of our approach herein are stronger power of objects discrimination and a well-determined inference.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Shenqing Jiang ◽  
Wei He ◽  
Fangfang Qin ◽  
Qingqing Cheng

In this paper, we focus on new methods to deal with multiple attribute group decision-making (MAGDM) problems and a new comparison law of interval-valued dual hesitant fuzzy elements (IVDHFEs). More explicitly, the interval-valued dual hesitant fuzzy 2nd-order central polymerization degree (IVDHFCP2) function is introduced, for the case that score values of different IVDHFEs are identical. This function can further compare different IVDHFEs. Then, we develop a series of interval-valued dual hesitant fuzzy power Heronian aggregation operators, i.e., the interval-valued dual hesitant fuzzy power Heronian mean (IVDHFPHM) operator, the interval-valued dual hesitant fuzzy power geometric Heronian mean (IVDHFPGHM) operator, and their weighted forms. Some desirable properties and their special cases are discussed. These proposed operators can simultaneously reflect the interrelationship of aggregated arguments and reduce the influence of unreasonable evaluation values. Finally, two approaches for interval-valued dual hesitant fuzzy MAGDM with known or unknown weight information are presented. An illustrative example and comparative studies are given to verify the advantages of our methods. A sensitivity analysis of the decision results is analyzed with different parameters.


Sign in / Sign up

Export Citation Format

Share Document