scholarly journals MHD Stagnation Point Flow of Nanofluid on a Plate with Anisotropic Slip

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 132 ◽  
Author(s):  
Muhammad Sadiq

In this article, an axisymmetric three-dimensional stagnation point flow of a nanofluid on a moving plate with different slip constants in two orthogonal directions in the presence of uniform magnetic field has been considered. The magnetic field is considered along the axis of the stagnation point flow. The governing Naiver–Stokes equation, along with the equations of nanofluid for three-dimensional flow, are modified using similarity transform, and reduced nonlinear coupled ordinary differential equations are solved numerically. It is observed that magnetic field M and slip parameter λ 1 increase the velocity and decrease the boundary layer thickness near the stagnation point. Also, a thermal boundary layer is achieved earlier than the momentum boundary layer, with the increase in thermophoresis parameter N t and Brownian motion parameter N b . Important physical quantities, such as skin friction, and Nusselt and Sherwood numbers, are also computed and discussed through graphs and tables.

1975 ◽  
Vol 14 (2) ◽  
pp. 283-294 ◽  
Author(s):  
B. U. Ö. Sonnerup ◽  
E. R. Priest

A family of exact solutions to the MHD equations is presented for steady incompressible two- and three-dimensional flow in the vicinity of the stagnation point, which forms in a current sheet separating two colliding plasma streams. The magnetic field in each plasma is strictly parallel to the current sheet, but can have different magnitudes and directions. Resistive and viscous effects are accounted for. These flows are of considerable interest in connexion with the magnetic field merging process. They represent the limit of resistive field annihilation with zero reconnexion.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Rakesh Kumar ◽  
Shilpa Sood

The steady two-dimensional boundary layer stagnation point flow due to a shrinking sheet is analyzed. The combined effects of magnetic field and nonlinear convection are taken into account. The governing equations for the flow are modeled and then simplified using the similarity transformation and boundary layer approach. The numerical solution of the reduced equations is obtained by the second-order finite difference scheme also known as Keller box method. The influence of the pertinent parameters of the problem on velocity and temperature profiles, skin friction, and sheet temperature gradient are presented through the graphs and tables and discussed. The magnetic field and nonlinear convection parameters significantly enhance the solution range.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
E. E. Tzirtzilakis ◽  
N. G. Kafoussias

The three-dimensional laminar and steady boundary layer flow of an electrically nonconducting and incompressible magnetic fluid, with low Curie temperature and moderate saturation magnetization, over an elastic stretching sheet, is numerically studied. The fluid is subject to the magnetic field generated by an infinitely long, straight wire, carrying an electric current. The magnetic fluid far from the surface is at rest and at temperature greater of that of the sheet. It is also assumed that the magnetization of the fluid varies with the magnetic field strength H and the temperature T. The numerical solution of the coupled and nonlinear system of ordinary differential equations, resulting after the introduction of appropriate nondimensional variables, with its boundary conditions, describing the problem under consideration, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the case of a representative water-based magnetic fluid and for specific values of the dimensionless parameters entering into the problem, and the obtained results are presented graphically for these values of the parameters. The analysis of these results showed that there is an interaction between the motions of the fluid, which are induced by the stretching surface and by the action of the magnetic field, and the flow field is noticeably affected by the variations in the magnetic interaction parameter β. The important results of the present analysis are summarized in Sec. 6.


2019 ◽  
Vol 30 (11) ◽  
pp. 4697-4710 ◽  
Author(s):  
Fadzilah Md Ali ◽  
Kohilavani Naganthran ◽  
Roslinda Nazar ◽  
Ioan Pop

Purpose This study aims to perform a stability analysis on a steady magnetohydrodynamic (MHD) mixed convection boundary-layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid over a vertical flat plate. The effect of induced magnetic field is also considered. Design/methodology/approach The governing boundary layer equations are transformed into a system of ordinary differential equations using the similarity transformations. The system is then solved numerically using the “bvp4c” function in MATLAB. Findings Dual solutions are found to exist for a certain range of the buoyancy parameter for both the assisting and opposing flows. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in many metallurgical processes, namely, drawing, annealing and tinning of copper wires. The results obtained are very useful for researchers to determine which solution is physically stable, whereby mathematically more than one solution exists for the skin friction coefficient and the heat transfer characteristics. Originality/value The present results of the stability analysis are original and new for the problem of MHD mixed convection stagnation-point flow of viscous conducting fluid over a vertical flat plate, with the effect of induced magnetic field.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Ali Shokrgozar Abbassi ◽  
Asghar Baradaran Rahimi

The existing solutions of Navier–Stokes and energy equations in the literature regarding the three-dimensional problem of stagnation-point flow either on a flat plate or on a cylinder are only for the case of axisymmetric formulation. The only exception is the study of three-dimensional stagnation-point flow on a flat plate by Howarth (1951, “The Boundary Layer in Three-Dimensional Flow—Part II: The Flow Near Stagnation Point,” Philos. Mag., 42, pp. 1433–1440), which is based on boundary layer theory approximation and zero pressure assumption in direction of normal to the surface. In our study the nonaxisymmetric three-dimensional steady viscous stagnation-point flow and heat transfer in the vicinity of a flat plate are investigated based on potential flow theory, which is the most general solution. An external fluid, along z-direction, with strain rate a impinges on this flat plate and produces a two-dimensional flow with different components of velocity on the plate. This situation may happen if the flow pattern on the plate is bounded from both sides in one of the directions, for example x-axis, because of any physical limitation. A similarity solution of the Navier–Stokes equations and energy equation is presented in this problem. A reduction in these equations is obtained by the use of appropriate similarity transformations. Velocity profiles and surface stress-tensors and temperature profiles along with pressure profile are presented for different values of velocity ratios, and Prandtl number.


1967 ◽  
Vol 28 (1) ◽  
pp. 149-151 ◽  
Author(s):  
A. Davey ◽  
D. Schofield

This paper shows the existence of a three-dimensional solution of the boundary-layer equations of viscous incompressible flow in the immediate neighbourhood of a two-dimensional stagnation point of attachment. The numerical solution has been obtained.


2017 ◽  
Vol 27 (12) ◽  
pp. 2879-2901
Author(s):  
N. Nithyadevi ◽  
P. Gayathri ◽  
A. Chamkha

Purpose The paper aims to examine the boundary layers of a three-dimensional stagnation point flow of Al-Cu nanoparticle-suspended water-based nanofluid in an electrically conducting medium. The effect of magnetic field on second-order slip effect and convective heating is also taken into account. Design/methodology/approach The thermophysical properties of alloy nanoparticles such as density, specific heat capacity and thermal conductivity are computed using appropriate formula. The non-linear parabolic partial differential equations are transformed to ordinary differential equations and solved by shooting technique. Findings The influence of compositional variation of alloy nanoparticle, nanoparticle concentration, magnetic effect, slip parameters and Biot number are presented for various flow characteristics. Interesting results on skin friction and Nusselt number are obtained for different composition of aluminium and copper. Originality/value A novel result of the analysis reveals that impact of magnetic field near the boundary is suppressed by the slip effect.


The structure of the stagnation-point flow in the presence of weak steady cross-stream vorticity in the external flow is investigated. A specific case of the two-dimensional basic forward stagnation-point flow past a circular cylinder is considered with the external three-dimensional vortical disturbance taken to be periodic in the spanwise direction with a wavelength λ*≤λ* N =π D /( Re D ) 1/2 , where D is the diameter of the cylinder and Re D is the flow Reynolds number. It is shown that the presence of weak but finite streamwise vorticity, with λ*≤λ* N in the external flow, can be supported by the flow in the stagnation zone, leading to a substructure of counterrotating streamwise eddies in the boundary layer. The magnitude of the streamwise vorticity in the boundary layer is found to match with that in the external flow for A* ^ X*N; it is of much smaller order for λ* > λ* N , which corresponds to a disturbance of the type considered by Hammerlin (1955).


Sign in / Sign up

Export Citation Format

Share Document