scholarly journals On the Structure of Finite Groupoids and Their Representations

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 414 ◽  
Author(s):  
Alberto Ibort ◽  
Miguel Rodríguez

In this paper, both the structure and the theory of representations of finite groupoids are discussed. A finite connected groupoid turns out to be an extension of the groupoids of pairs of its set of units by its canonical totally disconnected isotropy subgroupoid. An extension of Maschke’s theorem for groups is proved showing that the algebra of a finite groupoid is semisimple and all finite-dimensional linear representations of finite groupoids are completely reducible. The theory of characters for finite-dimensional representations of finite groupoids is developed and it is shown that irreducible representations of the groupoid are in one-to-one correspondence with irreducible representation of its isotropy groups, with an extension of Burnside’s theorem describing the decomposition of the regular representation of a finite groupoid. Some simple examples illustrating these results are exhibited with emphasis on the groupoids interpretation of Schwinger’s description of quantum mechanical systems.

1968 ◽  
Vol 11 (3) ◽  
pp. 399-403 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional.


2021 ◽  
Vol 25 (21) ◽  
pp. 606-643
Author(s):  
Yury Neretin

We classify irreducible unitary representations of the group of all infinite matrices over a p p -adic field ( p ≠ 2 p\ne 2 ) with integer elements equipped with a natural topology. Any irreducible representation passes through a group G L GL of infinite matrices over a residue ring modulo p k p^k . Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.


1991 ◽  
Vol 43 (6) ◽  
pp. 1243-1262 ◽  
Author(s):  
John E. Gilbert

For any group K and finite-dimensional (right) K-module V let be the right regular representation of K on the algebra of polynomial functions on V. An Isotypic Component of is the sum of all k-submodules of on which π restricts to an irreducible representation can then be written as f = ΣƬ ƒƬ with ƒƬ in .


2008 ◽  
Vol 78 (2) ◽  
pp. 261-284 ◽  
Author(s):  
XIN TANG ◽  
YUNGE XU

AbstractWe construct families of irreducible representations for a class of quantum groups Uq(fm(K,H). First, we realize these quantum groups as hyperbolic algebras. Such a realization yields natural families of irreducible weight representations for Uq(fm(K,H)). Second, we study the relationship between Uq(fm(K,H)) and Uq(fm(K)). As a result, any finite-dimensional weight representation of Uq(fm(K,H)) is proved to be completely reducible. Finally, we study the Whittaker model for the center of Uq(fm(K,H)), and a classification of all irreducible Whittaker representations of Uq(fm(K,H)) is obtained.


2012 ◽  
Vol 15 (4) ◽  
Author(s):  
Daniel McLaury

Abstract.In this paper, we classify the finite-dimensional irreducible linear representations of the


1977 ◽  
Vol 81 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Daniel Segal

1. Introduction. It is well known that every finite-dimensional irreducible representation of a nilpotent group over an algebraically closed field is monomial, that is induced from a 1-dimensional representation of some subgroup. However, even a finitely generated nilpotent group in general has infinite-dimensional irreducible representations, and as a first step towards an understanding of these one wants to discover whether they too are necessarily monomial. The main point of this note is to show how far they can fail to be so.


1971 ◽  
Vol 14 (1) ◽  
pp. 113-115 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite-dimensional simple Lie algebra over an algebraically closed field K of characteristic zero. It is well known that every finite-dimension 1, irreducible representation of L admits a weight space decomposition; moreover every irreducible representation of L having at least one weight space admits a weight space decomposition.


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


Sign in / Sign up

Export Citation Format

Share Document