scholarly journals System Identification Based on Tensor Decompositions: A Trilinear Approach

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 556 ◽  
Author(s):  
Laura-Maria Dogariu ◽  
Silviu Ciochină ◽  
Jacob Benesty ◽  
Constantin Paleologu

The theory of nonlinear systems can currently be encountered in many important fields, while the nonlinear behavior of electronic systems and devices has been studied for a long time. However, a global approach for dealing with nonlinear systems does not exist and the methods to address this problem differ depending on the application and on the types of nonlinearities. An interesting category of nonlinear systems is one that can be regarded as an ensemble of (approximately) linear systems. Some popular examples in this context are nonlinear electronic devices (such as acoustic echo cancellers, which are used in applications for two-party or multi-party voice communications, e.g., videoconferencing), which can be modeled as a cascade of linear and nonlinear systems, similar to the Hammerstein model. Multiple-input/single-output (MISO) systems can also be regarded as separable multilinear systems and be treated using the appropriate methods. The high dimension of the parameter space in such problems can be addressed with methods based on tensor decompositions and modelling. In recent work, we focused on a particular type of multilinear structure—namely the bilinear form (i.e., two-dimensional decompositions)—in the framework of identifying spatiotemporal models. In this paper, we extend the work to the decomposition of more complex systems and we propose an iterative Wiener filter tailored for the identification of trilinear forms (where third-order tensors are involved), which can then be further extended to higher order multilinear structures. In addition, we derive the least-mean-square (LMS) and normalized LMS (NLMS) algorithms tailored for such trilinear forms. Simulations performed in the context of system identification (based on the MISO system approach) indicate the good performance of the proposed solution, as compared to conventional approaches.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1790
Author(s):  
Jacob Benesty ◽  
Constantin Paleologu ◽  
Laura-Maria Dogariu ◽  
Silviu Ciochină

System identification problems are always challenging to address in applications that involve long impulse responses, especially in the framework of multichannel systems. In this context, the main goal of this review paper is to promote some recent developments that exploit decomposition-based approaches to multiple-input/single-output (MISO) system identification problems, which can be efficiently solved as combinations of low-dimension solutions. The basic idea is to reformulate such a high-dimension problem in the framework of bilinear forms, and to then take advantage of the Kronecker product decomposition and low-rank approximation of the spatiotemporal impulse response of the system. The validity of this approach is addressed in terms of the celebrated Wiener filter, by developing an iterative version with improved performance features (related to the accuracy and robustness of the solution). Simulation results support the main theoretical findings and indicate the appealing performance of these developments.


Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 211 ◽  
Author(s):  
Laura-Maria Dogariu ◽  
Silviu Ciochină ◽  
Constantin Paleologu ◽  
Jacob Benesty

The system identification problem becomes more challenging when the parameter space increases. Recently, several works have focused on the identification of bilinear forms, which are related to the impulse responses of a spatiotemporal model, in the context of a multiple-input/ single-output system. In this framework, the problem was addressed in terms of the Wiener filter and different basic adaptive algorithms. This paper studies two types of algorithms tailored for the identification of such bilinear forms, i.e., the Kalman filter (along with its simplified version) and an optimized least-mean-square (LMS) algorithm. Also, a comparison between them is performed, which shows interesting similarities. In addition to the mathematical derivation of the algorithms, we also provide extensive experimental results, which support the theoretical findings and indicate the good performance of the proposed solutions.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

Systems containing linear first-order dynamics and static nonlinear elements (i.e., nonlinear elements whose outputs depend only on the present value of inputs) are often encountered; for example, certain automobile engine subsystems. Therefore, system identification of static nonlinear elements becomes a crucial component that underpins the success of the overall identification of such dynamical systems. In relation to identifying such systems, we are often required to identify models in differential equation form, and consequently, we are required to describe static nonlinear elements in the form of functions in time domain. Identification of such functions describing static elements is often a black-box identification exercise; although the inputs and outputs are known, correct mathematical models describing the static nonlinear elements may be unknown. Therefore, with the aim of obtaining computationally efficient models, calibrating polynomial models for such static elements is often attempted. With that approach comes several issues, such as long time requirements to collect adequate amounts of measurements to calibrate models, having to test different models to pick the best one, and having to avoid models over-fitting to noisy measurements. Given that premise, this paper proposes an approach to tackle some of those issues. The approach involves collecting measurements based on an uncertainty-driven Active Learning scheme to reduce time spent on measurements, and simultaneously fitting smooth models using Gaussian Process (GP) regression to avoid over-fitting, and subsequently picking best fitting polynomial models using GP-regressed smooth models. The principles for the single-input-single-output (SISO) static nonlinear element case are demonstrated in this paper through simulation. These principles can easily be extended to MISO systems.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

Systems containing linear first-order dynamics and static nonlinear elements (i.e., nonlinear elements whose outputs depend only on the present value of inputs) are often encountered; for example, certain automobile engine subsystems. Therefore, system identification of static nonlinear elements becomes a crucial component that underpins the success of the overall identification of such dynamical systems. In relation to identifying such systems, we are often required to identify models in differential equation form, and consequently, we are required to describe static nonlinear elements in the form of functions in time domain. Identification of such functions describing static elements is often a black-box identification exercise; although the inputs and outputs are known, correct mathematical models describing the static nonlinear elements may be unknown. Therefore, with the aim of obtaining computationally efficient models, calibrating polynomial models for such static elements is often attempted. With that approach comes several issues, such as long time requirements to collect adequate amounts of measurements to calibrate models, having to test different models to pick the best one, and having to avoid models over-fitting to noisy measurements. Given that premise, this paper proposes an approach to tackle some of those issues. The approach involves collecting measurements based on an uncertainty-driven Active Learning scheme to reduce time spent on measurements, and simultaneously fitting smooth models using Gaussian Process (GP) regression to avoid over-fitting, and subsequently picking best fitting polynomial models using GP-regressed smooth models. The principles for the single-input-single-output (SISO) static nonlinear element case are demonstrated in this paper through simulation. These principles can easily be extended to MISO systems.


2017 ◽  
Vol 48 (1) ◽  
pp. 182-203 ◽  
Author(s):  
Erik Cuevas ◽  
Primitivo Díaz ◽  
Omar Avalos ◽  
Daniel Zaldívar ◽  
Marco Pérez-Cisneros

Sign in / Sign up

Export Citation Format

Share Document