scholarly journals Pythagorean Fuzzy Matroids with Application

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 423 ◽  
Author(s):  
Muhammad Asif ◽  
Muhammad Akram ◽  
Ghous Ali

The Pythagorean fuzzy models deal with graphical and algebraic structures in case of vague information related to membership and non-membership grades. Here, we use Pythagorean fuzzy sets to generalize the concept of vector spaces and discuss their basis and dimensions. We also highlight the concept of Pythagorean fuzzy matroids and examine some of their fundamental characteristics like circuits, basis, dimensions, and rank functions. Additionally, we explore the concept of Pythagorean fuzzy matroids in linear algebra, graph theory, and combinatorics. Finally, we demonstrate the use of Pythagorean fuzzy matroids for minimizing the time taken by a salesman in delivering given products.

Author(s):  
Jwngsar Moshahary

Intuitionistic or pythagorean fuzzy sets are the best tools to deal with uncertainty or ambiguity to solve diverse disciplines of application problems. It is often difficult to compute union, intersection, and complements when it comes to a large number of members contained in the set, also it is difficult to check whether it is a subset or not. Here, we used the C-programming language to overcome the problems, and then it is found that more effective and realistic results have been obtained.


Author(s):  
Malath F. Alaswad ◽  

This paper is dedicated to reviewing some of the basic concepts in neutrosophic linear algebra and its generalizations, especially neutrosophic vector spaces, refined neutrosophic, and n-refined neutrosophic vector spaces. Also, this work gives the interested reader a strong background in the study of neutrosophic matrix theory and n-refined neutrosophic matrix theory. We study elementary properties of these concepts such as Kernel, AH-Quotient, and dimension.


Author(s):  
Muhammad Jabir Khan ◽  
Muhammad Irfan Ali ◽  
Poom Kumam ◽  
Wiyada Kumam ◽  
Muhammad Aslam ◽  
...  

Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 142 ◽  
Author(s):  
Qianli Zhou ◽  
Hongming Mo ◽  
Yong Deng

As the extension of the fuzzy sets (FSs) theory, the intuitionistic fuzzy sets (IFSs) play an important role in handling the uncertainty under the uncertain environments. The Pythagoreanfuzzy sets (PFSs) proposed by Yager in 2013 can deal with more uncertain situations than intuitionistic fuzzy sets because of its larger range of describing the membership grades. How to measure the distance of Pythagorean fuzzy sets is still an open issue. Jensen–Shannon divergence is a useful distance measure in the probability distribution space. In order to efficiently deal with uncertainty in practical applications, this paper proposes a new divergence measure of Pythagorean fuzzy sets, which is based on the belief function in Dempster–Shafer evidence theory, and is called PFSDM distance. It describes the Pythagorean fuzzy sets in the form of basic probability assignments (BPAs) and calculates the divergence of BPAs to get the divergence of PFSs, which is the step in establishing a link between the PFSs and BPAs. Since the proposed method combines the characters of belief function and divergence, it has a more powerful resolution than other existing methods. Additionally, an improved algorithm using PFSDM distance is proposed in medical diagnosis, which can avoid producing counter-intuitive results especially when a data conflict exists. The proposed method and the magnified algorithm are both demonstrated to be rational and practical in applications.


Sign in / Sign up

Export Citation Format

Share Document