scholarly journals Comparison of the Optical Planar Waveguide Sensors’ Characteristics Based on Guided-Mode Resonance

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1315
Author(s):  
S. Bellucci ◽  
V. Fitio ◽  
I. Yaremchuk ◽  
O. Vernyhor ◽  
A. Bendziak ◽  
...  

A comparison of optical sensors’ characteristics based on guided-mode resonance has been carried out. It was considered a prism structure with a metal film, a metal grating on a metal substrate and a dielectric grating on a dielectric substrate. It is shown that the main characteristics are determined by the sensitivity of the constant propagation of the respective waveguides on a change in wavelength and a change in the refractive index of the tested medium. In addition, they depend on the full width at half maximum of the spectral or angular reflectance dependence. The corresponding analytical relationships obtained for the three types of sensors are almost the same. It is demonstrated that the ratio of the sensor spectral sensitivity on the resonance curve spectral width is equal to the ratio of the angular sensitivity on the angular width of the corresponding resonance curve for all three types of sensors.

2019 ◽  
Vol 437 ◽  
pp. 271-275 ◽  
Author(s):  
Caiyu Li ◽  
Kun Zhang ◽  
Yelan Zhang ◽  
Yuyang Cheng ◽  
Weijin Kong

2021 ◽  
Vol 11 (8) ◽  
pp. 3312
Author(s):  
Tingbiao Guo ◽  
Julian Evans ◽  
Nan Wang ◽  
Yi Jin ◽  
Jinlong He ◽  
...  

In this paper, we show that the guided mode resonance can exist in a low-index waveguide layer on top of a high-index substrate. With the help of the interaction of diffraction from a metal grating and total internal reflection effects, we verify that the guided mode can be supported in the low-index SU8 layer on a high-index substrate. Simulation and experiment show the resonant wavelength can be simply manipulated by controlling the geometrical parameters of the metal grating and waveguide layer. This structure extends the possibilities of guided-mode resonance to a broader class of functional materials and may boost its use in applications such as field enhancement, sensing and display.


2010 ◽  
Vol 19 (5) ◽  
pp. 054202 ◽  
Author(s):  
Wang Jian-Peng ◽  
Jin Yun-Xia ◽  
Ma Jian-Yong ◽  
Shao Jian-Da ◽  
Fan Zheng-Xiu

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 376
Author(s):  
Jia-Ming Yang ◽  
Nien-Zu Yang ◽  
Cheng-Hao Chen ◽  
Cheng-Sheng Huang

Portable systems for detecting biomolecules have attracted considerable attention, owing to the demand for point-of-care testing applications. This has led to the development of lab-on-a-chip (LOC) devices. However, most LOCs are developed with a focus on automation and preprocessing of samples; fluorescence measurement, which requires additional off-chip detection instruments, remains the main detection method in conventional assays. By incorporating optical biosensors into LOCs, the biosensing system can be simplified and miniaturized. However, many optical sensors require an additional coupling device, such as a grating or prism, which complicates the optical path design of the system. In this study, we propose a new type of biosensor based on gradient waveguide thickness guided-mode resonance (GWT-GMR), which allows for the conversion of spectral information into spatial information such that the output signal can be recorded on a charge-coupled device for further analysis without any additional dispersive elements. A two-channel microfluidic chip with embedded GWT-GMRs was developed to detect two model assays in a buffer solution: albumin and creatinine. The results indicated that the limit of detection for albumin was 2.92 μg/mL for the concentration range of 0.8–500 μg/mL investigated in this study, and that for creatinine it was 12.05 μg/mL for the concentration range of 1–10,000 μg/mL. These results indicated that the proposed GWT-GMR sensor is suitable for use in clinical applications. Owing to its simple readout and optical path design, the GWT-GMR is considered ideal for integration with smartphones or as miniaturized displays in handheld devices, which could prove beneficial for future point-of-care applications.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3221 ◽  
Author(s):  
Marie-Aline Mattelin ◽  
Jeroen Missinne ◽  
Bert De Coensel ◽  
Geert Van Steenberge

Optical sensors based on guided mode resonance (GMR) realized in polymers are promising candidates for sensitive and cost effective strain sensors. The benefit of GMR grating sensors is the non-contact, easy optical read-out with large working distance, avoiding costly alignment and packaging procedures. The GMR gratings with resonance around 850–900 nm are fabricated using electron beam lithography and replicated using a soft stamp based imprinting technique on 175 μ m-thick foils to make them suitable for optical strain sensing. For the strain measurements, foils are realized with both GMR gratings and waveguides with Bragg gratings. The latter are used as reference sensors and allow extracting the absolute strain sensitivity of the GMR sensor foils. Following this method, it is shown that GMR gratings have an absolute strain sensitivity of 1.02 ± 0.05 pm / μ ε at 870 nm.


2018 ◽  
Vol 124 (5) ◽  
pp. 053101
Author(s):  
Zhi Liu ◽  
Jietao Liu ◽  
Buwen Cheng ◽  
Jun Zheng ◽  
Chuanbo Li ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2797
Author(s):  
Jing-Jhong Gao ◽  
Ching-Wei Chiu ◽  
Kuo-Hsing Wen ◽  
Cheng-Sheng Huang

This paper presents a compact spectral detection system for common fluorescent and colorimetric assays. This system includes a gradient grating period guided-mode resonance (GGP-GMR) filter and charge-coupled device. In its current form, the GGP-GMR filter, which has a size of less than 2.5 mm, can achieve a spectral detection range of 500–700 nm. Through the direct measurement of the fluorescence emission, the proposed system was demonstrated to detect both the peak wavelength and its corresponding intensity. One fluorescent assay (albumin) and two colorimetric assays (albumin and creatinine) were performed to demonstrate the practical application of the proposed system for quantifying common liquid assays. The results of our system exhibited suitable agreement with those of a commercial spectrometer in terms of the assay sensitivity and limit of detection (LOD). With the proposed system, the fluorescent albumin, colorimetric albumin, and colorimetric creatinine assays achieved LODs of 40.99 and 398 and 25.49 mg/L, respectively. For a wide selection of biomolecules in point-of-care applications, the spectral detection range achieved by the GGP-GMR filter can be further extended and the simple and compact optical path configuration can be integrated with a lab-on-a-chip system.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ki Young Lee ◽  
Kwang Wook Yoo ◽  
Youngsun Choi ◽  
Gunpyo Kim ◽  
Sangmo Cheon ◽  
...  

Abstract The topological properties of photonic microstructures are of great interest because of their experimental feasibility for fundamental study and potential applications. Here, we show that robust guided-mode-resonance states exist in photonic domain-wall structures whenever the complex photonic band structures involve certain topological correlations in general. Using the non-Hermitian photonic analogy of the one-dimensional Dirac equation, we derive essential conditions for photonic Jackiw-Rebbi-state resonances taking advantage of unique spatial confinement and spot-like spectral features which are remarkably robust against random parametric errors. Therefore, the proposed resonance configuration potentially provides a powerful method to create compact and stable photonic resonators for various applications in practice.


Sign in / Sign up

Export Citation Format

Share Document